Energy Consumption And Healthcare – What does treatment really cost.

The basic problem in the beginning of the conservation movement (energy) was no one knew how much energy was being used and thus how much could be saved. The same is true in spades for medicine. Think about it, how much does an xray cost? No one knows. So how much energy does an xray take? When you ask you get answers like this…

seanm (881) 3/10/10 10:37am

This is a good question and the answer varies depending on the type of X-ray machines you’re talking about. Traditionally X-rays have only been possible with a high voltage generation, which takes a lot of energy, anywhere from 30 to 150 kV. By comparison, high-voltage electric transmission lines operate at about 110 kV, so we’re talking about a lot of power. However, X-rays can be exposed in tiny fractions of seconds and since the 1980s technology has advanced to make X-rays even faster so as to reduce the exposure of operators and patients to radiation. I could not find specific energy consumption ratings on various X-ray machines, but there are efforts afoot to replace traditional X-ray machines with digital ones, which in addition to eliminating the need to keep film and developer on hand will reduce energy consumption by up to 78%.



say what…


or an mri (they routinely charge 2 to 3 thousand $$$)???

How electricity does an Xray or MRI machine use per scan? How much does it cost the Hospital?

My brother insists that it takes a LOT of electricity in order to power and Xray or MRI machine just for one scan. He thinks it uses more than a normal household uses per month. I doubt that. Does anyone know how much is used or how much it costs? No guesses please…my other brother loves to answer questions with guess-answers because he thinks he’s probably always right…conveniently nobody ever has a computer when he gives these questionable answers and nobody remembers what he said


Best Answer – Chosen by Voters

The amount of energy used will always be constant on the machines the only way to solve this problem is to determine where the machines are used to get kilowatt costs as they are more expensive in some areas of the country. Once you determine that factor it will be easy to solve the equation.


Here is a listing of a typical “open” MRI Model describing the power consumption:
Manufactured by Esaote S.p.A.; a low field open MRI scanner with permanent magnet for orthopedic use. The outstanding feature of this MRI system is a patient friendly design with 24 cm diameter, which allows the imaging of extremities and small body parts like shoulder MRI. The power consumption is around 1.3 kW and the needed minimum floor space is an area of 16 sq m.

So it uses about 1.3kW to run. The usual power outlet is 480 volts/3 phase/125 amps. It uses more power (up to 2kW) when the magnet is on. Keep in mind that this is considered a ‘small’ MRI machine. Larger units weigh up to 12 tons and are assembled on site in phases.

Typical US 3-prong outlet is 125 volts/15 amps.

A typical US household uses approximately 8900 kW per year. So one MRI scanner consumes approximately several dozen households worth per year depending on how often it’s used.




X ray machines draw a lot of power for a very short time, a few seconds. So overall power consumption is low. MRI is no different.
Overall, the consumption would depend on how much it is used. If the X ray machine is being used for 1000 films, the consumption would be equal to a household consumption.


The point being that we have no idea what our healthcare costs and doctors want to keep it that way.


Leave a Reply