When Is A Concrete Block Like A Glass Window? When it comes to lousey R-Values

Believe it or not typical Concrete Products and single pane glass have the same R-Value – 1. That is because they readily give up heat because of their porus nature and in part because they are good conductors. There is a reason why castles were cold and dreary. An there is a reason why your basement is cool in the summer.

http://www.coloradoenergy.org/procorner/stuff/r-values.htm

R-Value Table

Insulation Values For Selected Materials

 Construction Materials

Concrete Block 4″   0.80
Concrete Block 8″   1.11
Concrete Block 12″   1.28
Brick 4″ common   0.80
Brick 4″ face   0.44
Poured Concrete 0.08  

I should mention that the poured concrete number is by the inch. It takes no math wiz to see that 20 inches of typical concrete still is an R-value of slightly less than 1.

But you ask, “Mr. CES Man why is that important?” It is important in the Residential Market because a lot of us have basements made out of concrete, masonary block or a combination of the two.

According to the government:

U.S. Department of Energy – Energy Efficiency and Renewable Energy

A Consumer’s Guide to Energy Efficiency and Renewable Energy

Basement Insulation

A properly insulated basement can help reduce your energy costs. However, basement walls are one of the most controversial areas of a house to insulate and seal. You need to carefully consider the advantages and disadvantages, not to mention moisture control.

Before insulating or deciding whether to add insulation to your basement, first see our information about adding insulation to an existing house or selecting insulation for new home construction if you haven’t already.

U.S. Cities R-10* R-2-**
Buffalo, NY $350 $390
Minneapolis, MN $400 $450
St. Louis, MO $250 $290

*Such as 2 to 3 inches of exterior foam insulation.
**Such as with most insulated concrete forms.

Annual Energy Savings

The energy cost savings of basement wall insulation vary depending on the local climate, type of heating system, fuel cost, and occupant lifestyle. Typical annual cost savings by R-value in a few U.S. cities are provided in the table above for a 1,500 square-foot home with a conditioned basement heated by natural gas ($0.72/therm).

Advantages and Disadvantages

In most cases, a basement with insulation installed in the exterior basement walls should be considered a conditioned space. Even in a house with an unconditioned basement, the basement is more connected to other living spaces than to the outside. This connection makes basement wall insulation preferable to insulating the basement ceiling.

Compared to insulating the basement ceiling, insulating basement walls has the following advantages:

  • Requires less insulation (1,350 square feet of wall insulation for a 36 x 48-foot basement with 8-foot walls, compared with 1,725 ceiling)
  • More easily achieves continuous thermal and air leakage boundaries because basement ceilings typically include electrical wiring, plumbing, and ductwork.
  • Requires little, if any, increase in the size of the heating and cooling equipment. The heat loss and air leakage through the basement ceiling is similar to that through the exterior walls of the basement.

These are some other advantages of insulation on exterior basement walls:

  • Minimizes thermal bridging and reducing heat loss through the foundation
  • Protects the damp-proof coating from damage during backfilling
  • Serves as a capillary break to moisture intrusion
  • Protects the foundation from the effects of the freeze-thaw cycle in extreme climates
  • Reduces the potential for condensation on surfaces in the basement
  • Conserves room area, relative to installing insulation on the interior.

:}

Leave it to the Bush administration to say that insulation is controversial. If you are building a new home there is not a doubt that you should insulate the exterior basement walls. In fact if you are building a pad style house, you should insulate underneath the pad with some kind of insulative mixed cement. I am not sure the whole pad needs to be of that type concrete. It is expensive but if you can afford it can’t hurt.

http://www.askthebuilder.com/N2-Basement_Insulation.shtml

Mr. Builder Man makes the point that the only place to insulate in the basement is on the walls. He adds:

 Because your basement walls are conducting cold into your basement via the cold ground outside, it might be worthwhile to add insulation over your exposed masonry foundation. You can choose to use closed-cell foam or fiberglass if you choose. But be sure you check with your local building department as some insulations that are flammable – such as closed cell foam – must be covered with drywall or other approved material to prevent rapid fire/flame spread.

:}

He finishes on a note that warms the heart of a die hard conservationist:

I would also inspect the juncture between the wood framing and the top of the concrete foundation. Do this on a windy day and try to feel for air leaks. Air infiltration can be a major drain on your heating budget. Pack insulation in any cracks you discover or caulk them to stop air flow.

All these people agree:

www.homeimprovementweb.com/information/how-to/basementinsulation.htm

www.homeenvy.com/db/0/750.html

www.owenscorning.com/around/insulation/fallpromo/DIY-Basement.asp

www.doityourself.com/scat/basementinsulation

www.thisoldhouse.com/toh/asktoh/question/0,,396510,00.html

www.state.mn.us/mn/externalDocs/Commerce/Basements_110602012856_Basement.pdf

www.builtgreen.org/articles/0208_mold.htm

I prefer a radical approach hire a Backhoe and dig out the dirt around your basement. Then you can apply ridgid waterproof R Board to the outside of the basement. Then you can backfill with gravel for drainage and tap down some dirt. Your house will thank you for ever. For those people that have a house already resting on a pad, you have one heck of a problem on your hands. 

:}

Superinsulation Can Mean Many Things – But it is all good

The term was started in the “new build” industry but it has since migrated to the built environment as well. The general concept is that there is no such thing as TOO MUCH insulation in the residential market. It can provide living space that “sips” energy.

http://en.wikipedia.org/wiki/Superinsulation

The term “superinsulation” was coined by Wayne Schick at the University of Illinois at Urbana-Champaign. In 1976 he was part of a team that developed a design called the “Lo-Cal” house, using computer simulations based on the climate of Madison, Wisconsin. The house was never built, but some of its design features influenced later builders.

:}

If I am not mistaken he was getting his concepts from those used in much colder climates, like Sweden and Denmark where they value their resources…actually where they value life and family in general.

http://www.newscientist.com/article/mg12917595.400-the-house-that-came-in-from-the-cold-houses-designed-withenergy-efficiency-in-mind-are-more-pleasant-to-live-in-less-harmful-totheenvironmentand-need-not-be-expensive-to-build-.html

The house that came in from the cold:

Houses designed with energy efficiency in

mind are more pleasant to live in, less

harmful to the environment-and need not be expensive to build.

09 March 1991

Buildings use about half the energy industrialized countries consume. Much of it could be saved, conserving resources and reducing our contribution to global warming. Energy efficient housing has already been tried and tested in several countries, with some success.

Between 1975 and 1977, building researchers and designers in North America and Scandinavia pioneered a radically new approach to reducing heat loss from buildings, now called ‘superinsulation’. Conventional buildings lose most of their heat by simple air leakage. Superinsulated buildings are firmly sealed against draughts, with a controllable ventilation system to provide fresh air in winter. In Sweden, all new houses must by law have fewer than three air changes per hour, tested at a pressure difference between inside and outside of 50 pascals. In superinsulated houses this figure is often brought below 1 air change per hour, while in a typical British house there are 10 air changes per hour under the same conditions (see Table 1).

By the late 1980s, there were more than 100 000 superinsulated dwellings in North America and Scandinavia, where most houses are built of timber. But the problems of adapting these techniques to houses built of brick and concrete prevented superinsulation being applied on any large scale in Europe until the early 1980s. Most of Britain’s houses-new and old-are put together with little regard to energy efficiency . In the rest of Europe, however, the technique is beginning to take root.

The Netherlands now has more than 1000 superinsulated houses.

:}

The important thing to remember here is that these are not just superinsulated living spaces, they are TIGHT spaces as well. Just throwing insulation at the problem is a good thing but tight construction techniques are important too. Little things like caulking in existing homes can accomplish much the same thing. Another thing to pull out of the construction “speak” above. It takes 3 turnovers in the atmosphere in a living space to keep humans alive. Also in tight spaces smells and moisture can build up so adequate ventalation is critical as is a carbon monoxide/dioxide detector.

Also note that most of these houses contain backup, many times “unconventional” heating sources. Though the idea was that all of the cooking, human waste heat, water heating etc. would handle heating in the winter.  And that ventaltion could handle the cooling in the summer. Most buyers wanted backup heating and cooling as a psychological reassurance. Often times a geothermal heat pump served as a device that could supply both heating and cooling.

Then there is also the Passive House movement:

http://en.wikipedia.org/wiki/Passive_solar_building_design

Passive solar buildings aim to maintain interior thermal comfort throughout the sun’s daily and annual cycles whilst reducing the requirement for active heating and cooling systems. Passive solar building design is one part of green building design, and does not include active systems such as mechanical ventilation or photovoltaics, nor does it include life cycle analysis.

http://www.solarserver.de/lexikon/passivhaus-e.html

Passive Building

From the energy-saving point of view, passive buildings are most advanced, and when considering the involved technology they can be constructed almost anywhere

https://www.rmi.org/images/PDFs/Energy/E95-28_SuperEffBldgFrontier.pdf

www.oikos.com/library/energy_outlet/passive_solar.html

Basic Ideas in

Passive Solar Buildings

Natural Forces At Work For You
In any climate, a building can make use of free heat from the sun. An elementary passive solar heating concept is letting in the sunshine with windows, then keeping the resulting heat inside with insulation and thermal mass. The goal in passive solar building is the optimal balance of mass, glass, and insulation for a particular site and house design. A well-designed solar home in Oregon’s Williamette Valley can get up to 30 percent of its winter heating needs met at no cost.

Passive Cooling

Passive cooling requires correct placement of windows, proper shading of windows by trees or constructed shade, light-colored roofs and walls to reflect heat, nighttime ventilation, and thermal mass to prevent overheating in hot, sunny weather. Large west-facing glass areas usually present a risk of unwanted summer afternoon heat gains. Air-conditioning is unnecessary in the maritime Northwest, if the house is properly designed.

Choose The Right Building Site

The more southern exposure, the better the site for passive solar. A steep north-facing slope, or large trees or other buildings in the wrong places will cut back on your solar window. Protective berms, natural slopes, and thick tree cover to the north side block cold winter winds and help create a warmer microclimate around your house. See the Energy Outlet handout on landscaping and house siting.

Let The House Face The Sun

It is very important to orient the long axis of the house east-west, so that as much wall and roof length faces directly south as possible. The most livable homes group the kitchen and dining room to the east, for morning light. Clerestory windows and dormers can bring winter light into otherwise dark areas of the house (minimize skylight use). Use a solar path chart to design a building so that low winter sun shines in and high summer sun is blocked by effective use of windows, overhangs and shade.

South-Facing, High Quality Windows

Passive solar houses have large window areas on the south side where the sun comes from, and minimal windows on the north side. Some sites will suggest minimal west-facing windows (SHGC<.40) as well. Window specifications should be tuned for the window location; use softcoat LowE (lower SHGC) on north, west, and possibly east-facing glazing, and hardcoat LowE, or maybe uncoated windows (.55 or higher SHGC) on south-facing glazing. You should be able to get windows with U-values below 0.32 without much difficulty by using warm-edge glazing spacers, LowE coatings, and inert gas fills.

Superinsulate, Build Tight, Ventilate Right

High R values and minimal air leakage are the most important factors in building any low-energy house. The Oregon Energy Code is a minimum, not a maximum. There is no such thing as too much insulation, only practical difficulties in implementation! Blower door test to verify house tightness. Invest in a high performance ventilation system; an air to air heat exchanger recovers the heat in exhausted ventilation air.

:}

This however can lead you into exotic discussions of equipment and materials which cause people to go to sleep. As the forward on one passive building book put it, “If you have never read about superinsulation before this could be a tough read”. These discussions do not include rammed earth homes:

http://www.rammedearthhomes.com/

or houses made of bales of hay or straw,

which would baffle most people. Bottom line is that if you can get R value 60 in your unused attic or a radiant barrier and R 30 if it is being used for storage. You will save BUNCHES of money quickly. I would add the small point that adequate ventilation of the attic space during the summer is important too. Also if you stuff R 15 in your walls anyway you can you will exceed probably 50% of the housing stock in the USA.
:}

Residential Solar Photovoltaics Are Affordable – Now is the time to buy

I think this story tells itself:

http://www.thedailygreen.com/green-homes/eco-friendly/evergreen-solar-panels-460608

6.19.2008 12:38 PM

More Efficient, Lower

Impact Solar Panels Developed

Evergreen Solar Announces

Improved Solar Technology

Massachusetts-based Evergreen Solar has announced a new line of high efficiency solar panels this month.

Called the ES-A Series, the 200, 205 and 210 W solar panels are made with Evergreen’s proprietary “String Ribbon” technology. Inside the company’s custom furnaces, a set of special parallel strings are pulled through a molten pool of silicon. A thin “ribbon” forms between strings as the silicon cools. The ribbon is then cut into wafers, which are fashioned into solar cells.

According to Evergreen, the carbon footprint of these new panels is up to 50% smaller than those of competitors, and they have a quicker energy payback — reportedly as fast as 12 months for installed panels. This last point is particularly exciting, since the amount of energy required to make solar panels has long been a bone of contention among critics of the technology.

Back in the late 90s, energy paybacks for solar panels were as high as seven years. Today, they are often reported as “1-5 years.”

Evergreen says it will begin production of its new panels by July. They will be built in its new manufacturing plant in Devens, Massachusetts, where the workforce has reportedly swelled from 300 to 1,000.

The company says its final products will include longer cables for easier installation, new clickable connectors and a new low voltage configuration for greater flexibility.

:}

:}

http://www.boston.com/news/science/articles/2008/06/18/evergreen_solar_gets_2_contracts_worth_about_600m/

Evergreen Solar Gets

2 contracts worth about

$600M

 June 18, 2008

MARLBORO, Mass.—Solar panel producer Evergreen Solar Inc. said Wednesday it signed two sales contracts extending through 2012 with a combined value of about $600 million.

The contracts are with White River Junction, Vt.-based groSolar and Germany’s Wagner & Co Solartechnik GmbH, which designs and installs solar electric and hot water systems.

The solar panels for the new contracts will be made in Evergreen’s Devens, Mass., facility starting in July.

Evergreen Solar said its contractual backlog now stands at $1.7 billion.

Shares jumped $1.37, or 13.4 percent, to $11.56 in after-hours trading. The stock closed at $10.24 in the regular session.

Every Engineer Must Become A Social Engineer – If the residential housing market is to make in modern times

For instance the home refrigerator must be totally redesigned. NOT made more efficient but redesigned. Light tunnels need to totally replace windows. The HOUSE itself needs to be completely rethought.

http://www.spacedaily.com/reports/Energy_Housing_and_Recycling_Advances_To_Be_Unveiled_At_TMS_2008_Annual_Meeting_999.html

Energy, Housing and

Recycling Advances To Be

 Unveiled At TMS

2008 Annual Meeting


Energy efficiency is also one of the problems with today’s housing. Stephen Lee, professor in the School of Agriculture at Carnegie Mellon University in Pittsburgh, Pennsylvania, says American methods of homebuilding are not responding to global and regional changes.

by Staff Writers
Warrendale PA (SPX) Dec 18, 2007
Energy, housing and recycling solutions for the 21st century are among the research topics that will be presented at the TMS 2008 Annual Meeting and Exhibition, March 9-13, in New Orleans, Louisiana, USA. These topics are part of the “Materials and Society” vein of the meeting, which focuses on engineering solutions to some of society’s most perplexing problems.

“Engineers solve problems, make things happen and enhance the quality of life on this planet. This has always been a constant; however what has changed over time has been the needs of society and how engineers have responded to those needs,” according to Diran Apelian, Ph.D., Director of the Metal Processing Institute in Worcester, Massachusetts, and chair of the Materials and Society program.

“With 20 percent of the world population living in absolute poverty; 18 percent of the population lacking access to safe drinking water; 40 percent having no access to sanitation; energy consumption increasing at a higher rate than population growth; and healthcare needs and expectations increasing out of sync with the cost of health care delivery; there is no doubt that the engineer for the 21st century has to be a social scientist.”

One such challenge is finding clean, alternative sources to produce energy at economically, competitive rates given the world’s demand for energy, and global warming. Tomas Diaz De La Rubia of the Lawrence Livermore National Laboratory in Livermore, California, will discuss the efforts to date to develop new materials for energy applications in his presentation, “Energy Sources for the 21st Century – Implications and Challenges.”

“Meeting the growth in energy demand while mitigating climate change will demand new energy sources beyond fossil fuels, such as solar, nuclear and, ultimately, fusion.” Dr. Diaz says these new materials must be highly efficient, safe and reliable in extreme environments.

Energy efficiency is also one of the problems with today’s housing. Stephen Lee, professor in the School of Agriculture at Carnegie Mellon University in Pittsburgh, Pennsylvania, says American methods of homebuilding are not responding to global and regional changes.

“Our houses of today are not meeting the needs of the users, nor are they performing as good global citizens.” Professor Lee believes applying industrial engineering principles to the housing delivery process could solve these problems. In his presentation, “Housing for the 21st Century – Design, Technology and Construction,” he will use the 2007 Carnegie Mellon Solar Decathlon house as a case study to illustrate process solutions.

:}

Reengineering is actually pretty simple
:}

http://bita.hdinc.com/en/art/?132

But “resizing” is an inadequate definition for reengineering. Classic reengineering is re-deciding the way we do business based on the best options available to us at that time. It is not driven fundamentally by people, but by changes in technology that occur over time.

Take the example of our CEO’s house. Sixty years ago a young accountant told his fiancee, “I’ll build us the best home money can buy.” Then he worked with an architect to design the house. Some of the decisions he made were about which plumbing and lighting options to install. He and his architect looked at all the options available in the 1930’s and chose the best ones. So they “engineered” the house. Sixty years later, Dutch (Holland) and his wife, Jan, sat down with an architect to consider some changes. Once again they had to make decisions about plumbing and lighting. This time they had an entirely different set of options to look at. Based on these new options, they “reengineered” the house and put in plumbing and lighting systems not available to the original builder. We would expect that someone purchasing the house in 2020 will probably make different choices … ones that Dutch and Jan don’t — can’t — know about.

:}

AHHHHH home sweet home

:}

http://www.solardecathlon.org/homes_gallery.html#carnegie

cornell.jpg

penn.jpg 

aandm.jpg

The last one is my favorite – I love personal windmills…

Barack Obama Or John McCain Whose Energy Policies Are Better? Time will tell

I am not even going to get into this until after the conventions. There will be plenty of time to talk about it then. Right now it looks like we are on a fault line. One guy wants to get us off hydrocarbons as fa uel and headed towards a new green future. The other guy wants nukes, clean coal, and “drill often and drill here”. I will let you guys figure out whom is who.

Canadian Kids Rock On the Environment – What polluters don’t understand about a rapidly changing population

For 3 generations now, environmental stewardship has been taught in the k-12 school systems of many countries. The change it will bring is only now a wave but soon it will be a tidal wave:

http://www.ecokids.ca/pub/home_pages/index.cfm

kids.gif

Welcome to the EcoKids recognition zone. The place where EcoKids clubs strut their stuff to the world-wide-web! Have a look around to see what’s going on across Canada and who’s doing what in your province. Get ideas for your own club by reading about the efforts and successes of others.

:}

I put up examples – for a complete list go to the site

:}

 Delwood Elementary School, Edmonton

http://www.ecokids.ca/pub/home_pages/schools/atlantic/Ecole_St._Catherine_School.cfm

http://www.ecokids.ca/pub/home_pages/schools/bc/FourSeasonsMontessori.cfm

http://www.ecokids.ca/pub/home_pages/schools/manitoba/Stonewallhomepage.cfm

http://www.ecokids.ca/pub/home_pages/schools/ontario/Gore_Hill_Public_School.cfm

http://www.ecokids.ca/pub/home_pages/schools/quebec/CirqueduSoleilAlegriaSchool.cfm

http://www.ecokids.ca/pub/home_pages/schools/saskatchewan/Ecole_Elsie_Mironuck_School.cfm

:}

Here is a sample of what they do:

http://www.ecokids.ca/pub/home_pages/schools/atlantic/NorthEastKingsEducationCentre.cfm

One of our major projects for this year was our penny drive for the World Wildlife Fund. This program was called “Pennies for the Planet”. Over five weeks, we were able to raise $759.29 in pennies. It took a lot of time and dedication to count all of the pennies. On average, about five students every lunch hour would count pennies by hand. This took approximately a month. All together, that´s close to 76 000 pennies! We used the money to adopt a Panda bear, an owl, an Orca, a Sea turtle, an Asian elephant, a Polar bear, part of the boreal forest, the Arctic and the oceans 

Another project that we´ve been working on this year is our Peace Garden. We worked very hard to clear it of trash and weeds and planted new flowers and plants. We also raised awareness about global warming and littering. One of our environment club members gave a speech about global warming this year and another member is part of a news crew that makes announcements once or twice a month about littering.

To help get the message out, we made posters about different environmental issues. Some of the issues were anti-idling, composting and waste reduction. To help encourage the use of composters, we were able to purchase a compost bin for our cafeteria

:}

Uranium – The Best Place For It Is In The Ground

Wow!  The Australians rally kicked the energy ball forward. I suppose this would be called the ultimate hot rocks project. Drill to the uranium and get the heat. An electricity generator that could last for 25,000 years and be totally clean. Where are the investment bankers when you need them?

 http://www.sciencedaily.com/releases/2008/05/080508132406.htm

Tapping Into Australia’s Unique

Hot Energy Resources

ScienceDaily (May 12, 2008) — Australia is uniquely endowed with heat-producing elements under its surface that could provide potentially unlimited amounts of geothermal power for this country, says geoscientist Dr Sandra McLaren.


Dr McLaren will speak about her research into Australia’s heat-producing elements, and their potential for future energy production, at the Academy of Science’s peak annual event Science at the Shine Dome May 7.She says that west of the line between Cairns and the mouth of the Murray River lies a belt of rocks containing the enriched elements uranium, thorium, and potassium that are around 1.5 billion years old. These enriched elements are essentially a heat source located in the upper part of our continental crust.’Our status as one of the most prospective countries in the world for geothermal power generation is due to this extraordinary enrichment in uranium. That’s because when we bury these enriched rocks, even beneath only about two or three kilometres of sediment, they’re capable of generating extremely high temperatures which we can use to generate geothermal power.’

She says that nuclear power and geothermal power use the same source of fuel – enriched uranium.

‘The fundamental difference between the two energy options is the degree to which the uranium is enriched in a particular spot, and the way in which we choose to use it. So, although as geoscientists we are aware of this resource, there is still a lot of work we can do in assessing and documenting it and developing new exploration strategies and, further down the track, new technology to exploit this.

‘Its an extraordinary resource that we have. Its had profound impact on our geological past, and we’re at the point in time, in terms of society, of making a choice of what to do with that resource into the future.

‘We have on average 2-3 times the normal concentration of uranium, thorium and potassium in the crust, so we’re in a better position than probably any other country in the world to generate this type of geothermal energy.’

In terms of the future of geothermal power in Australia she says: ‘Its potentially unlimited in terms of the actual resource. I think the thing that’s going to constrain how and when we can use this resource for generating power is more on the engineering side, more understanding how to exploit it once we’ve identified how much is there.

‘The exploration companies in Australia are used to exploring for base metals and gold and metallic resources. Exploring for geothermal energy is a different ask all together and we really need to develop a framework to get better data sets for us to assess different resources and better ways of looking fo

Thanks To Gas Turbine World – And Harry Jaeger for pointing out my error

In a post in-or-around May 28th I said that the Airforce was preparing to switch to a synthetic fuel made from coal. I said if done properly that it might not be a bad thing environmentally premised on the fact that the Death Comes From Above crowd was going to fly and going to kill no matter what. I mean it’s hard enough to sell a noncarbon economy without trying to argue for peace and harmony. I am for all of the above, but the Corporate Capitalists are never going to buy peace and harmony – it’s just not their thing. There is nothing good about flying from a global warming point of view. But that is for another post.

http://gasification-igcc.blogspot.com/

Anyway in that post I repeatedly and obnoxiously referred to the process as gasification and it’s not. It’s an entirely different process process using entirely different reagents and at entirely different temperatures. The proper term for that is Coal To Liquids Process(ing)(es) and Harry pointed it out to me. I am soooooo sorry. It has been corrected. I shall never do it again.

For more on this devastating mistake:

www.futurecoalfuels.org/

www.worldcoal.org/pages/content/index.asp?PageID=423

www.nrdc.org/globalWarming/coal/liquids.pdf

 

www.en.wikipedia.org/wiki/Coal
and even where to invest if you want to:
www.seekingalpha.com/article/22719-liquidcoal-four-stocks-to-watch

 
:}

But it still stinks, generates huge amount of CO2 and other Sox and Nox gases, and it is from the past not the future. Did I mention that it uses twice as much energy as it produces?

cl1.jpg

cl.jpg

cl3.jpg

images available from:

www.treehugger.com

www.celsias.com

Then there is this:

http://www.futurepundit.com/archives/003569.html

July 09, 2006

First US Coal To Liquid Plant ComingThe New York Times reports on plans by Rentech to build a plant to convert coal to liquid fuel burnable in diesel engines.

Here in East Dubuque, Rentech Inc., a research-and-development company based in Denver, recently bought a plant that has been turning natural gas into fertilizer for forty years. Rentech sees a clear opportunity to do something different because natural gas prices have risen so high. In an important test case for those in the industry, it will take a plunge and revive a technology that exploits America’s cheap, abundant coal and converts it to expensive truck fuel.

“Otherwise, I don’t see us having a future,” John H. Diesch, the manager of the plant, said.

If a large scaling up of coal-to-liquid (CTL) production takes place then an increase in pollution seems likely. Though perhaps advances in conversion technologies and tougher regulations could prevent this. The use of coal to make liquid fuels will increase CO2 emissions since the conversion plants will emit CO2 and of course the liquid fuel will emit CO2 just as conventional diesel fuel does. Those who view rising CO2 emissions with alarm therefore see a shift to CTL as a harmful trend.

And, uniquely in this country, the plant will take coal and produce diesel fuel, which sells for more than $100 a barrel.

The cost to convert the coal is $25 a barrel, the company says, a price that oil seems unlikely to fall to in the near future. So Rentech is discussing a second plant in Natchez, Miss., and participating in a third proposed project in Carbon County in Wyoming.

That sounds very profitable. The longer the price of oil stays high the likelier that capitalists will decide it is worth the risk to build CTL plants. Many are holding back worried that oil prices could tank again as happened in the early 1980s. That price decline drove the Beulah North Dakota Great Plains Synfuels Plant into bankruptcy. Though it was restarted and now produces natural gas from coal profitably. Though the bankruptcy cut the capital cost of operating that plant and so is not a perfect measure of the profitability of processes to convert coal to gas or liquid.
:}

Thanks Harry!

What A Difference A Month Makes – The mouth piece for the rich was bitchin about all the “money” we spend on alternatives

Oh I meant the Wall Street Journal, sorry….I bet this article wouldn’t see the light of day today. Wait till oil hits 200$$ a barrel and we shall see what they say then.

http://online.wsj.com/article/SB121055427930584069.html?mod=opinion_main

REVIEW & OUTLOOK

Wind ($23.37) v. Gas (25 Cents)
May 12, 2008; Page A14

Congress seems ready to spend billions on a new “Manhattan Project” for green energy, or at least the political class really, really likes talking about one. But maybe we should look at what our energy subsidy dollars are buying now.

Some clarity comes from the U.S. Energy Information Administration (EIA), an independent federal agency that tried to quantify government spending on energy production in 2007. The agency reports that the total taxpayer bill was $16.6 billion in direct subsidies, tax breaks, loan guarantees and the like. That’s double in real dollars from eight years earlier, as you’d expect given all the money Congress is throwing at “renewables.” Even more subsidies are set to pass this year.

An even better way to tell the story is by how much taxpayer money is dispensed per unit of energy, so the costs are standardized. For electricity generation, the EIA concludes that solar energy is subsidized to the tune of $24.34 per megawatt hour, wind $23.37 and “clean coal” $29.81. By contrast, normal coal receives 44 cents, natural gas a mere quarter, hydroelectric about 67 cents and nuclear power $1.59.

The wind and solar lobbies are currently moaning that they don’t get their fair share of the subsidy pie. They also argue that subsidies per unit of energy are always higher at an early stage of development, before innovation makes large-scale production possible. But wind and solar have been on the subsidy take for years, and they still account for less than 1% of total net electricity generation. Would it make any difference if the federal subsidy for wind were $50 per megawatt hour, or even $100? Almost certainly not without a technological breakthrough.

By contrast, nuclear power provides 20% of U.S. base electricity production, yet it is subsidized about 15 times less than wind. We prefer an energy policy that lets markets determine which energy source dominates. But if you believe in subsidies, then nuclear power gets a lot more power for the buck than other “alternatives.”

The same study also looked at federal subsidies for non-electrical energy production, such as for fuel. It found that ethanol and biofuels receive $5.72 per British thermal unit of energy produced. That compares to $2.82 for solar and $1.35 for refined coal, but only three cents per BTU for natural gas and other petroleum liquids.

All of this shows that there is a reason fossil fuels continue to dominate American energy production: They are extremely cost-effective. That’s a reality to keep in mind the next time you hear a politician talk about creating millions of “green jobs.” Those jobs won’t come cheap, and you’ll be paying for them.

The Yucca Mountain Operating Permit Arrived In Washington Today!

The application on CD arrive several months ago but the ACTUAL Paper application arrive today at the Environmental Protection Agency and the Nuclear Regulatory Commission simultaneously. The application filled a semitrailer truck for each agency and took a chain of workers to unload the boxes. This is not getting off to an environmentally start is it? I wonder how many trees they killed to make the application.

So I thought we would take this day before Weird Bird Friday to catch up with the old “hole in the ground” in the Nevada Desert.

Here is what the what the current female Editor of the Magazine RadWaste puts it:

http://www.ans.org/pubs/magazines/rs/docs/2008-3-4-2.pdf

“Isn’t ironic?  While the nuclear reactor sector is beginning to boom….In the area of high-level waste, the proposed Yucca Mountain/spent fuel repository project is expected to submit its license application to the NRC this year. But Congress, thanks to efforts of Yacca Mountain opponent Sen. Harry Reid (D-Nev), the Senate majority leader, cut more than 100 million $$$ from the fiscal 2008 appropriation for the project, putting the the license application at risk and ensuring that continuing research….

     The Nuclear Energy Institute, the industry’s trade group, is so excited about the nuclear renaissance that it’s willing to put waste issues aside for now.”

:}

That doesn’t sound good.

http://www.republican-eagle.com/articles/index.cfm?id=50783§ion=News

Others seem more hopeful – the Natives re restless:

City and tribal leaders hail Yucca

Mountain  progress

Mike Longaecker The Republican Eagle
Published Thursday, June 05, 2008

 A major step toward building a national nuclear waste repository has been met with support from Red Wing leaders.

The Department of Energy on Wednesday submitted its license application to build a facility at Yucca Mountain, Nev., where proponents hope to store spent nuclear fuel and radioactive waste.

If accepted, the Nuclear Regulatory Commission will undertake what officials estimate will be a three-year licensing process.

Prairie Island Indian Community Tribal Council President Ron Johnson called the application submittal “a giant step.”

“I hope it goes further than that,” he said.

The tribe has long been a supporter of the project, which proposes to store 77,000 metric tons of nuclear waste inside the remote, tunneled-out mountain.

Both the tribe and the city of Red Wing are members of the Nuclear Waste Strategy Coalition.

City officials have also backed Yucca Mountain in hopes of moving the waste out of the Red Wing area.

“As neighbors to a nuclear power plant, it is vital to the community to move Yucca Mountain forward and create a permanent repository for this waste,” Red Wing City Council President Carol Duff said in a statement.

“It cannot continue to be stored in the backyards of communities like Red Wing, creating a risk of exposure.”

 :}

In fact it’s all tied up in the new Carbon Capping Bill though the good thing is that the Global Warming as a hoax arguement disappeared from the debate:

http://www.csmonitor.com/2008/0605/p02s05-uspo.html

 On Tuesday, the Department of Energy (DOE) submitted a long-awaited license application to build a nuclear waste dump at Yucca Mountain in Nevada – a move that supporters say is essential to revive the nuclear-power industry.

Nuclear-power advocates hope to use the global-warming bill as a vehicle for reviving the industry. They make the case that without a significant increase in nuclear power, it will be impossible to lower carbon emissions without a blow to US living standards.

“It’s time we begin the nuclear renaissance in America and Yucca Mountain is a vital step,” said Sen. Jim DeMint (R) of South Carolina, in a statement after the announcement. “If Congress is serious about reducing carbon emission, nonemitting nuclear energy must play an even larger role than it does today.”

Many Democrats are wary of risking the support of some environmental groups over nuclear power. Majority leader Reid, a longtime opponent of a nuclear-waste dump in his state, charged that DOE filed the application with only about 35 percent of the work done to justify it.

“Yucca Mountain is as close to being dead as any piece of legislation could be,” he said on Tuesday. Republicans say they are holding out for a wide-ranging debate over the global-warming bill, including many amendments. Democratic leaders worry that some amendments, including those over nuclear power, could undermine support for the bill.

Commenting on the diverse coalition of lawmakers now supporting the bill, Sen. Barbara Boxer (D) of California said: “They need a certain amount to stay on it. I need a certain amount not to get off it. We’re looking for that sweet spot.”

:}

Of course, the Energy Hogs are screaming VICTORY:

http://blog.heritage.org/2008/06/05/morning-bell-the-lefts-nuclear-nightmare/

 Morning Bell: The Left’s Nuclear Nightmare

 Posted June 5th, 2008 at 9.18am in Energy and Environment.

The U.S. Department of Energy officially submitted the license application to build a nuclear waste facility at Yucca Mountain in Nevada earlier this week. A strong supporter of the Lieberman-Warner carbon-capping bill, Majority Leader Harry Reid (D-Nev.) was incredulous, telling reporters: “Yucca Mountain is as close to being dead as any piece of legislation could be.” However, Sens. Joe Lieberman (I-Conn.) and John Warner (R-Va.) both recognize that their bill will not pass without more nuclear power.

Far to Warner and Lieberman’s left though, Sen. Barbara Boxer (D-Calif.) thinks their bill does not need to reform the nuclear industry: “Already in the bill there’s a whole funding stream for these low-carbon, noncarbon energy sources and that’s sufficient. I don’t think you need more.” It is nice that Boxer believes this–but the Environmental Protection Agency (EPA) and the Energy Information Administration (EIA) sure don’t.

Throughout the debate on Lieberman-Warner, activists such as the Environmental Defense Fund have quoted selectively from EPA and EIA studies to minimize the ruinous effects the bill would have on the U.S. economy. For example, this press release celebrates the fact that under Lieberman-Warner the economy will grow by 80 percent by 2030.

What the EDF doesn’t tell you is that the same report says Lieberman-Warner would raise energy prices by 44 percent in the same time frame. But the real kicker comes when you look at the assumptions the EPA made to come to its conclusions. Despite the fact that the U.S. has not built a new nuclear reactor in two decades, the EPA assumes that the U.S. will build 50 new reactors in the next 25 years.

Without these new power plants, which the Environmental Defense Fund no doubt will oppose, the U.S. economy will be 650 gigawatts of electric power short of its needs. That will send the price of energy through the roof — and kill many more jobs than the EPA currently estimates.

:} 

If you want to take a look at the site you can go here:

http://maps.google.com/maps?ie=UTF-8&hl=en&tab=wl

But trust me it’s pretty boring!

:}