They Finally Busted The Bastards – Oil speculators starting to get complaints from the CFTC

Commodity Futures Trading Commission….say it now Commodity Futures Trading Commission …..oh yah now the CFTC is going to be hot on TV. God Bless Steve Hargreaves. I am a thief.. but I am not going to list his entire post or even claim it as my own. But I have been bitching about the speculators in oil since last September so I think I get to thump my chest a little. I even rented the Movie Trading places so I can get into the spirit of the thing. So let’s recronical the events. In August the  Fed announces that they are more worried about stability in the housing market, refuses to back the dollar with interest rate increases and the dollar plunges. All of the currency speculators dumped their dollars (many of whom are also the oil speculators today – hint hint) and the price of oil climbs to 50$$s a barrel. The Saudies and OPEC see the rise as good for them and constrict production slightly. The price climbs to 60$$s a barrel and the speculators say hmmm. There is a commodity we can abuse so they buy long in the futures market, take that oil out of the market and the price begins to soar. WHY? Because these are people who have never been in the oil market. They are not going to touch a single barrel of oil and the oil guys do not know these people. So the speculators keep buying and the price keys rising which should have ended at about 100$$ a barrel. At that point every financial planner for every rich person said, “get into oil” like it was gold or something. As they did the oil soared again to somewhere around 130$$ per barrel. The gasoline refiners realized they could jack the price of gasoline under the guise of expensive oil even though that’s not the price they were paying.

The Saudies got pissed off because they know at some point people will quit using gasoline and they know most that quit using gasoline will not come back ultimately destroying their market. This is when it gets good because this is when the chisslers and the real crooks get in. They start selling their futures to each other at inflated prices, and the people busted today start hammering the market at the open and the close and the market hyperinflates to high water marks for now at 148/149$$$ a barrel. Damn you would think these people would at least have the decency to hit 150$$ but nooooo. That is because the Senate announced that they were holding hearings on speculation and the Bushman order the CFTC to investigate. OH OO. So the speculators start to sell off but they have to doooo itttt slowlllly or the oil market crashes and the whole world starts looking for them to kill them!

So what will happen now? Well alot of minor chisselers and crooks will go to jail. The real players at the hedge funds will be nearly out of oil by the end of August and prices will slowllllly come down until the refiners have to drop prices and start up capacity that they have not been using lately.

Now, who is responsible for all of this? Well Phil Gramm and his Wife Wendy actually (yes the guy who said we were whiners)  They effectively changed the rules for commodity trading at the end of Bill Clinton’s term and people just sort of played with it in 2000 to 2003 BECAUSE there was more money to be made, and more fun too, in the housing market. Yah those Wall Street guys are real wacky when it comes to stealing other people’s money.  

:}

http://money.cnn.com/2008/07/24/markets/cftc/index.htm

Traders manipulated oil prices – U.S.

Regulators claim firm attempted to ‘bang the close’ by amassing large positions

just before markets closed.

By Steve Hargreaves, CNNMoney.com staff writer

NEW YORK (CNNMoney.com) — The government charged an oil trading firm Thursday with manipulating oil prices in the first complaint to be announced since the regulators began a new investigation into wrongdoings in the energy markets.

The Commodity Futures Trading Commission accused Optiver Holding, two of its subsidiaries and three employees with manipulation and attempted manipulation of crude oil, heating oil and gasoline futures on the New York Mercantile Exchange.

“Optiver traders amassed large trading positions, then conducted trades in such a way to bully and hammer the markets,” CFTC Acting Chairman Walt Lukken said at a press conference. “These charges go to the heart of the CFTC’s core mission of detecting and rooting out illegal manipulation of the markets.”

In May, under the backdrop of record oil prices and calls from legislators to crack down on speculative oil trading and market manipulation, the CFTC announced a wide-ranging probe into oil price manipulation. The agency says it has dozens of investigations ongoing.

The complaint filed Thursday names Bastiaan van Kempen, chief executive; Christopher Dowson, a head trader; and Randal Meijer, head of trading at an Optiver subsidiary.

The CFTC said the firm attempted to “bang the close” by amassing large positions just before markets closed – forcing prices up – then selling them quickly to drive prices down and pocketing the difference.

The alleged manipulation was attempted 19 times on 11 days in March 2007, the agency said. In at least five of those 19 times, traders succeeded in driving prices higher twice and lower three times, according to the CFTC.

Optiver issued a written statement saying the firm had received the complaint.

“We take the Commission’s action very seriously, and are treating it with utmost attention and care,” said the statement. “Obviously, we cannot comment further until we have had the opportunity to review the complaint.”

CFTC stressed that the price changes were small and the manipulation was isolated, and that the investigation has nothing to do with the recent heat the agency has taken on Capitol Hill over rising oil prices.

:}

Here is more from the CFTC itself:

http://www.cftc.gov/newsroom/enforcementpressreleases/2008/pr5521-08.html

CFTC Charges Optiver

 Holding BV,

Two

 Subsidiaries, and High

-Ranking

Employees with

 Manipulation of NYMEX

Crude Oil,

Heating Oil,

and Gasoline Futures

Contracts

Defendant Caught on Tape and in

Email Saying He Would “Bully”

the Market

 The CFTC filed the civil enforcement action in the United States District Court for the Southern District of New York against Optiver Holding BV, a global proprietary trading fund headquartered in the Netherlands, and two subsidiaries – Optiver US, LLC (Optiver), a Chicago-based corporation, and Optiver VOF, a Dutch company. The complaint also names defendants Christopher Dowson (head trader of Optiver), Randal Meijer (head of trading and supervisor of Optiver and Optiver VOF) and Bastiaan van Kempen (Chief Executive Officer of Optiver).

The Energy Futures Contracts Manipulated by Defendants

The defendants’ manipulative trading scheme involved three futures contracts listed for trading on the NYMEX: the Light Sweet Crude Oil futures contract (Crude Oil, also referred to as West Texas Intermediate (WTI)), the New York Harbor Heating Oil futures contract (Heating Oil), and the New York Harbor Reformulated Gasoline Blendstock futures contract (New York Harbor Gasoline). The settlement price for the Crude Oil, New York Gasoline, and Heating Oil futures contracts is derived by calculating the volume weighted average prices of futures trades conducted during the closing period for the contracts (from 2:28 to 2:30 p.m.). The volume weighted average price is referred to commonly as the VWAP.

The defendants’ manipulative scheme involved the Trading at Settlement (or TAS) contracts in Crude Oil, Heating Oil, and New York Harbor Gasoline contracts. TAS contracts are futures contracts, except that the parties determine at the initiation of the contract that the price of the TAS contract will be the day’s settlement price plus or minus an agreed differential. A TAS contract which has been bought or sold can be offset by trading a futures contract in the opposite direction.

The Manipulative Scheme

The manipulative scheme, in defendant Dowson’s words, to “bully the market,” involved trading a significant volume of futures contracts in Crude Oil, Heating Oil, and New York Harbor Gasoline in the opposite direction of the associated TAS position, before and during the close of the contracts. The defendants’ goal in trading the large volume of futures was to improperly influence and affect the price of futures contracts in Crude Oil, Heating Oil, and New York Harbor Gasoline. The defendants’ manipulative scheme was, in the words of defendant Meijer, “built on the idea that we can control the VWAP.”

As alleged in the complaint, the scheme ultimately permitted defendants to profit regardless of the direction of the market move, provided that Optiver’s futures trading in the close and before the close was in the opposite direction of the TAS position it had accumulated during the trading day.

:}

All of this is hysterical because they just said that the reason for the rise in the price of oil was SUPPLY AND DEMAND 2 days ago. Dare I say it? Thats Rich. 

Green Cars – Can we get rid of the internal combustion engine fast enough?

Forget high gasoline prices. That maybe a short term issue but the fact is global warming is the more important issue that we should not lose sight of:

 http://www.greencar.com/

2010 Prius Production

Moves to US

By Todd Kaho

Like all automakers, Toyota is acutely aware of evolving consumer demands and is responding with some pivotal changes in its manufacturing structure and product mix. It’s beginning this in a big way by adjusting the production mix at three of its U.S. plants to improve production efficiency. In short, big trucks like the new Tundra aren’t selling so Toyota is aiming at the need to build more of its fuel-efficient cars that are in high demand. And the place to start? The Prius, of course.

The most interesting news to come out of this shift is that the next-generation Prius hybrid will be assembled at Toyota’s new Blue Springs, Mississippi plant in late 2010. That move makes it the second Toyota hybrid to be built in the U.S., with the current Camry Hybrid already assembled in Kentucky. The Highlander mid-size SUV was originally slated for production at the Mississippi plant but will now be built at Toyota’s Princeton, Indiana manufacturing facility in place of the full-size Tundra pickup. All current Prius models are currently built at Toyota’s Motomachi Plant in Toyota City, Japan. The move toward building popular hybrids in the markets where they’re already selling well or are expected to do so is already in play at Toyota, which announced recently that it would build the Camry Hybrid in Melbourne, Australia for that market.

When it emerges from the Mississippi assembly plant, the 2010 Prius will be the fourth generation of Toyota’s iconic gasoline-electric hybrid in North America. Speculation and rumors about the new car are running rampant as the current Prius – introduced as a completely revised model in 2004 – nears the end of its life cycle. Spy shots are circulating of what “might” be the next-generation Prius and sketches imagining what the next iteration will look like are also at play. Some are speculating that the 1/X Concept shown here, which debuted at the most recent Tokyo Motor Show, may provide clues regarding the look of the next Prius. The reality is that nobody really knows the true scoop. No doubt, when the new Prius debuts at the 2009 North American International Auto Show (NAIAS) in Detroit this coming January the world will definitely be watching.  

 :}

http://www.greenercars.org/highlights_mkttrends.htm

The Greenest of 2008

This year, the natural gas-powered Honda Civic GX claims the title as the greenest vehicle for the fifth year running. Toyota’s hybrid-electric Prius, which places second, is the year’s top-scoring gasoline vehicle, while Honda’s Civic Hybrid ranks a close third. Rounding out the top five are the recently released Smart Fortwo Convertible and Coupe and Toyota Yaris. In total, the Greenest Vehicles list contains one natural gas, four hybrid-electric, and seven conventional gasoline vehicles, a mix of technologies that demonstrates some of the avenues automakers have taken in developing greener vehicles. Whether using hybrid gasoline-electric designs, compressed natural gas, or simply clean and efficient conventional gasoline designs, automakers have visibly demonstrated their ability to engineer with the environment in mind.

This year sees a number of changes to the nameplates on the Greenest Vehicles list. After being shut out of the top twelve in 2007, a domestic automaker makes an appearance on our top-twelve list. The 2008 Tier 2 Bin 3 / PZEV-certified Ford Focus comfortably takes the 9th spot in the annual ranking. Other new entries to the 2008 “Greenest” list include the Smart Fortwo Convertible/Coupe and the Mini Cooper/Clubman, both small cars that achieve excellent fuel economy.  However, Hyundai’s PZEV-certified Elantra narrowly misses a spot on our list, landing in 13th place as a result of the above-mentioned new entries. Following suit are the Kia Rio, Hyundai Accent, Chevrolet Cobalt, and Pontiac G5, all of which score very well according to our ranking but face more competition this year from several clean vehicles that have entered the market. This is, of course, good news to consumers, who have greater options when it comes to buying the greenest vehicle that meets their needs and fits their budget.

Other good news is the fact that the vast majority of the year’s greenest vehicles are widely available coast-to-coast. Not too long ago, the list was dominated by vehicles for sale only in California, while today more than 80 percent of the Greenest Vehicles can be purchased in any state.

 :}

http://autos.yahoo.com/green_center-top100/

Concept Green Cars

Toyota first demonstrated a futuristic hybrid concept vehicle at the Tokyo Auto Show in 1995. The car, which consisted of an electric motor connected to a regular gasoline engine, was called the Toyota Prius. Hybrid skeptics ?both at the show and afterward?are now silent, as cumulative global sales continue to surpass all expectations. Which of today’s wild and wacky hi-tech enviro car concepts will become tomorrow’s practical fuel-efficient vehicles? Let’s take a look at some contenders.

Volvo 3CC

The Volvo 3CC concept car, a rocket-shaped three-seater, can accommodate the full range of power systems, from traditional gasoline and alternative fuels such as ethanol, to hybrid and all electric. Three thousand lithium-ion batteries, just like those used in laptop computers, give it the equivalent of 105 horsepower. The 3CC has the aerodynamics of a two-seat sports car, but can slip a third passenger, or perhaps two children, in a single seat in the back.

 Daihatsu UFE III

Daihatsu, the Japanese car company known for compacts, is on the third generation of the UFE (which stand for Ultra Fuel Economy). This mini-hybrid vehicle can transport three people?one upfront, and two in the back. The hybrid system comprises a 660-cubic centimeter direct-injection gasoline engine, two motors, and a nickel-metal hydride battery. Its estimated fuel economy is 169 miles per gallon.

Nissan Pivo

Nissan has developed a bubble-shaped, three-seater electric car called the Pivo?short for pivot. It runs exclusively on electricity. The cabin sits atop a wheeled platform that can swivel 360 degrees, doing away with the need to reverse when emerging from narrow spaces.

:}

But these are concept cars which means that they are years away from production. I do not think we are going to make it.

For more:

www.epa.gov/greenvehicle

www.editorial.autos.msn.com/article.aspx?cp-documentid=434502

www.thegreencarco.com/

http://puregreencars.com/

www.ecoworld.com/energy/EcoWorld_Energy_Green_Vehicles1.cfm

:}

State Journal Register Supports Big Oil –

Last week the State Journal Register solicited a “Guest OP-ED” piece from the mouth piece for the Illinois Petroleum Council that in simple form says we must overcome our current energy crisis by,  Conservation and
fuel economy
  (which he instantly discounts), Stronger energy-trading alliances with neighbors, Expand domestic resources, and  Diversify supply.  By diversify he means Nukes. You can read the rest of the slop at:

http://www.sj-r.com/opinions/x833727955/David-Sykuta-We-have-to-get-over-it-and-explore-energy-options

I know for a fact that many people have written to respond against most of his ideas because many environmentalists including Will Reynolds and Diane Lopez always do. I posting my letter here because I sent one and they did not publish it:

Editor

State Journal Register

One Copley Plaza

Springfield, IL 62701

Emailed – 07/015/08

Dear Editor:

 

Dave Sykuta recent guest editorial “Get Over It” (the title of an Eagles song)  was nothing but one long environmental taunt. It had nothing to do with the irrationality we call the Oil Market.

 

Supply is not the overwhelming issue that he makes it out to be. The Iranians have 7 or 8 super tankers full of oil (depending on which report you listen to) parked in their main port because nobody is buying them. Why? Because the price is artificially elevated. Speculators beginning as far back as September of last year have bought up the cheap oil. We are now at a precipitous economic moment. An oil Mexican Standoff. The speculators can’t sell or the price will drop dramatically and hardly anyone is buying because they know the price is too high. Best guesstamates are that at least 40-50$$ of the current price of oil is due to speculators.

 

But the Drillers want to take advantage of this artificial shortage to get more Leases, because in their warped minds the leases that they hold are the leases the other guy don’t. The proof of this is the current 85 million acres that they lease that they won’t explore.

 

Really though nobody cares about the price of oil, what they car about is the prices of gasoline products. That price is being rigged as well. Refineries are at 85% of their capacity because if they ran the refineries at capacity they would lose money. In a perverse market flaw, the more they make the cheaper gas becomes and they lose money. Again the gasoline refiners are using the rigged higher oil prices to run up their profits by keeping refineries at the bare minimum it takes to run this country.

 

All the loud shouting at each other about the price we pay at the pump has obscured the realities on the ground. Oil production has been stuck on 85 million barrels a day now for sometime. Even though everybody has pledged to raise it. That may be the real limit on production and the world may have to learn live with it, discounting the fact that China is hording diesel in preparation for the Olympics.

 

Anyway, “if the drill here drill now” crowd had their way, what would they drill with? Brazil just bought or leased the 160 available rigs in the world to try to extract oil from their new alleged oil field off their southern coast.

 

When an oilman that I trust (there ain’t many – please see There Will Be Blood) T. Boone Pickens pledges to build a 1000 megawatt wind farm in Texas and then pays his own money for an TV advertisement to say why. (hint: we are running out of oil) Then I go with the wind farm guy every time.

 

I believe the Eagles said they would tour again when hell freezes over. Did I miss something?

  

Doug Nicodemus

948 e. adams st.

riverton, IL  62561

629-7031

dougnic55@yahoo.com

 

:}

AND YET THEY RUN STORIES LIKE THIS IN THEIR Business Section in the newspaper and don’t even acknowledge that they did on their web site:

http://www.pe.com/business/local/stories/PE_Biz_S_oilprofits22.3ad2ac6.html

Big Oil steers record profits to investors

MONEY: Critics say too much is going into stock

buybacks and not enough into exploration.

By JOHN PORRETTO
The Associated Press
HOUSTON – As giant oil companies like Exxon Mobil and ConocoPhillips get set to report what will probably be another round of eye-popping quarterly profits, just where is all that money going?The companies insist they’re trying to find new oil that might help bring down gas prices, but the money they spend on exploration is nothing compared with what they spend on stock buybacks and dividends.It’s good news for shareholders, including mutual funds and retirement plans for millions of Americans, but no help to drivers already making drastic cutbacks to offset the high cost of fuel. The five biggest international oil companies plowed about 55 percent of the cash they made from their businesses into stock buybacks and dividends last year, up from 30 percent in 2000 and just 1 percent in 1993, according to Rice University’s James A. Baker III Institute for Public Policy.

The percentage they spend to find new deposits of fossil fuels has remained flat for years, in the mid-single digits.

The issue has become more sensitive as lawmakers and Americans frustrated by high gas prices have balked at gaudy reports of oil industry profits. ConocoPhillips is scheduled to kick off the latest round of Big Oil earnings reports Wednesday.

Oil prices are set on the open market, not by the oil industry. But that hasn’t stopped public protests, a series of congressional grillings for top oil executives, and a failed attempt by lawmakers to slap Big Oil with a windfall profits tax.

In the first three months of this year, Exxon Mobil Corp., the world’s biggest publicly traded oil company, shelled out $8.8 billion on stock buybacks alone, compared with $5.5 billion on exploration and other capital projects.

ConocoPhillips has already told investors that its stock buybacks for April to June of this year will come to about $2.5 billion — nine times what it spent on exploration.

Stock buybacks are common throughout corporate America, not just for Big Oil. They shrink the amount of stock on the open market, essentially increasing its value and giving individual shareholders a bigger stake in the company.

But some critics say Big Oil focuses too much on boosting stock prices, in an industry that sometimes ties executive pay to stock price.

And in focusing on buybacks and dividends over exploring for new oil, some critics say, oil companies jeopardize its already dwindling share of world supply.

“If you’re not spending your money finding and developing new oil, then there’s no new oil,” said Amy Myers Jaffe, an energy expert at Rice University who’s studied spending patterns of the major oil companies.

Investor-owned companies like Exxon Mobil and Chevron hold less than 10 percent of global oil and gas reserves, way down from past decades. And finding new oil has become harder and more expensive.

No one questions that Big Oil is rolling in cash. The cash the biggest oil companies bring in from running their businesses, or operating cash flow, is four times what it was in the early 1990s.

“It becomes a management decision,” said Howard Silverblatt, a senior index analyst at Standard & Poor’s. “It’s not like they’re going to the board and saying, ‘Well, I can do one or the other or the other.’ The balance sheets are flush with cash.”
 

:}
:}

Oil Hits 128$$ Per Barrel – We are all going to die!

Oh never mind. As I said, all along, the oil run up was 3 parts speculation and 1 part nerves. As the August Senate hearings approach on speculation the speculators, like the cock roaches that they are, will scurry and the nerves will harden. Guess what? Oil will fall to 70$$ a barrel and gas prices will come down. How will the American public respond to the fact that they just stuffed 350 billion $$ in speculators pockets? Like sheep – BAAAAAAAAA?

This will happen again however so now that we have a house we can live in, in energy confort what shall we do with what is sitting in the driveway? Like the speculators – SELL

http://www.cartalk.com/

http://www.sj-r.com

Friday, July 18, 2008

.

It’s time to dump SUV

.

TOM AND RAY MAGLIOZZI 

.

DEAR TOM AND RAY: This will prob­ably seem like a really stupid question, but I need professional advice. I own a 1-year-old Jeep in perfect condition, which I purchased for my job. I was laid off from said job, and now I own a gas-guzzling, really nice-looking Jeep Grand Cherokee that is too big and too expensive for me to drive, espe­cially since I no longer have a job. My question is, Should I trade it in for a smaller, more fuel-efficient car? I have no payments, and being unemployed limits what I could purchase. With gas prices continuing to climb, I don’t real­ly know what I should do, since I own the vehicle outright. Care to advise an idiot? — Micci

RAY: I guess this is what you might call “idiot-to-idiot” communication.

TOM: Or, more accurately, “idiot-AND-idiot-to-idiot communication.” So consider yourself warned, Micci.

RAY: Actually, you’re hardly alone. SUVs and pickups were, for many people, a fashion trend during the past 10 years. And like many fashion trends, they were, at heart, exceeding­ly impractical.

TOM: Tell me about it. Try wearing a miniskirt like I did during the entire winter of’68!

RAY: People who didn’t need pick­ups and SUVs bought them anyway, because they were seen as cool, despite the fact that they handled like crud, tended to flip over more than other ve­hicles, ripped countless inseams during ingress and egress, and drank gas like it was a dark-chocolate-caramel-mocha freddo from Feet’s Coffee.

TOM: So now, here we are, with a lot of people stuck with SUVs that get 15 mpg while gas is $4 a gallon. What to do?

RAY: I’d say dump it, Micci. You’re going to take a bath on it, no question. Anytime you sell a car that’s a year old, you take a huge hit from initial de­preciation. Add to that the fact that you’re selling a vehicle that not many people want nowadays, for the same reasons you don’t want it. But there’s always a price at which someone will take it.

TOM: If you don’t want to sell it yourself, you can even try CarMax, if there’s one in your area. They buy late-model cars at the wholesale price.

RAY: And since you own it outright, you can take the cash you get, buy a cheaper 2-, 3- or 4-year-old fuel-effi­cient car, and then put aside a few grand to get you through this period of unemployment.

TOM: If you had an income and weren’t in desperate straits, you could hang on to it a little longer, to see if gas prices level off and come down a bit — which they might. That might make your Jeep a little more valuable on the used-car market. But if you can’t afford the gas to go out looking for a job, you need to do something now. Plus, I don’t see gas prices com­ing down a lot.

RAY: Me, either. Combine the insta­bility and war in the Middle East with increased demand from growing economies in China and India, and the decreasing supply of oil in the Earth, and the long-term trend for oil prices is up, rather than down.

Got a question about cars? Write to Click and Clack in care of this newspa­per, or e-mail them by visiting the Car Talk Web site at www.cartalk.com.

:}
:}

Farming And Growing Food After The Oil Runs Out – We Shall Survive

People have been brainwashed to believe that our world will come to a crashing end without oil. The Peak Oil people in particular have a saying “back to the olduvai valley” because they believe that our civilization will crumble like the Egyptions, Greeks and other GREAT civilizations. Olduvai was the valley where they found the homonid Lucy’s bones.

Admittedly some of those societal “downs” caused famine and pestilence, but in others it merely led to lots of people going back to farming. As silly as it may sound, you can generate electricity with a bicycle and charge a battery to run a computer. Us modern humans have run on excess energy  for so long it might not hurt us or the planet to take a break and set some priorities.

So anyway from where I live in Riverton IL in the USA, I would just go back to farming and let a few yard birds run. Others are not so lucky. I have said with no malice or cruelty that a lot of people are going to die. But I think we will do what humanity has done for 1000’s of years…we hang together.

Here is what other people say:

http://www.forumforthefuture.org.uk/greenfutures/articles/602540

Farming without fossils

In a world on the cusp of fuel shortages, one enterprising collection of British farmers have come up with a solution they claim is practical, profitable – and close to home. They’re growing their own. Trevor Lawson reports

Barton reckons that the Goodwood estate’s tenant farmers could produce enough biofuel to supply the estate and themselves, and still have a surplus for sale. The key, he argues, is keep it local. “There’s no point in producing seed here, sending it miles for processing and then bringing the fuel all the way back. It’s too inefficient.” So Barton is looking at a combined rape press and refinery system that will produce 2,000 litres of fuel an hour, round the clock, for as long as there is rape seed to supply it. He’s also got plans for the pressed ‘cake’ that’s left over. “You can make it into dense briquettes for a superb solid fuel, burning more slowly than wood but at a higher temperature. So it can be used to feed boilers to generate heat and electricity.” Barton’s logic seems inescapable, and it’s finding allies in Whitehall, too. Nick Cooper manages the Farming Without Fossil Fuels project at the Department for Environment, Food and Rural Affairs.

http://globalpublicmedia.com/stephen_decater_on_farming_without_oil

 Stephen Decater speaks with Els Cooperrider of The Party’s Over on KZYX about biodynamic farming in Round Valley of Mendocino county. Stephen talks about draft horses, their history, and how he uses them. He also talks about the Live Power Community Farm, which is a community-based agriculture (CSA) project, and how this arrangement differs from a market-based relationship. They are looking for apprentices now. Contact info: livepower@igc.org and (707) 983 8196.

 :}

The above is a cool site complete with Post Carbon Institute and Energy Farming sections

:}

Then there are the back to the earth types:

 http://www.soilassociation.org/peakoil

Peak Oil: the threat to our food security

Peak oil refers to the point when the maximum amount of oil that can be extracted globally is reached. Thereafter, production will tail off as remaining reserves become more difficult and more expensive to harvest. Many of the services that we currently take for granted – cheap flights, cheap imports and global distribution of food – will be radically curtailed.
 One of the greatest impacts will be on how and where our food is produced. The dominant models of intensive agriculture and the global food trade depend on vast inputs of oil. In a post peak oil world, the combination of higher transport costs, climate change and increased conflict will necessitate us all relying far more on re-localised food supplies. Even though it requires far lower amounts of oil, organic farming is not exempt from the need to adapt.

You can find out more in our information sheets on peak oil and climate change and agriculture.

Over the last 20 years, the Soil Association has established organic farming as the most sustainable method of production and helped grow a burgeoning market for organic food. Now we must refine our focus if we are to adapt to the changing external circumstances which will touch all our lives very soon. The phrase that comes to mind is that we are ‘building the ark of sustainable agriculture’ for the new era ahead.

The challenge is immediate, but fear should not be the driver. The Soil Association is optimistic that we have the vision and means to create a new, localised food culture that will deliver long-term quality of life in place of the old dynamic of unrestrained globalisation and short-termist exploitation.

http://transitionculture.org/2006/12/20/applying-energy-descent-plans-to-food-and-farming-an-article-in-living-earth-magazine/ 

Applying Energy Descent Plans to Food and Farming – an article in Living Earth magazine.

samag1

The Soil Association is the UK’s organic certification body, and they are making peak oil and the relocalisation of food the focal point of their 60th Anniversary conference in Cardiff in February. I am editing a report that will accompany the conference, which explores this deeper, and to introduce this, I recently wrote an article that appears in Living Earth Magazine, the organisation’s publication. It suggests that the concept of Energy Descent Plans could be applied to food and farming in the UK, an idea that will be explored in more depth in the report. Here is the article followed by some additions from within the Soil Association.

Energy scarcity is an opportunity for a better world, says Rob Hopkins

I used to think that one day the world would literally run out of oil. A driver in Leicestershire would use the last drop and that would be that, similar to the felling of the last Truffula Tree in Dr Seuss’s The Lorax. It turns out that scarcity kicks in earlier than that. It’s not the last drop that is the problem but the mid-point of production, when all the oil that is easy and cheap to extract has been used up. It looks as if we are reaching that point soon.

:}

Where folks have “farmable” or “growable” land, all of us will have to plant Victory Gardens and raise rabbits and chickens. We will have to buy and sell local. For those that do not… well that is something we all should be planning for now. There are probably 2 billion people in harms way. What about the economy? Well what about it? Aren’t WE the economy. Money may be worrthless…but so what. That is only gona matter to people that gots a lot of it.

:}

Agricultural Energy Inputs Increased 250% In The Late 50’s and Early 60’s

Let’s look at the food and energy issue another way. I spend most of my time talking to people about how to use less energy in their homes. But, according to Dale Allen Phieffer I can save much more on food than in my house or my car.

http://www.holon.se/folke/worries/oildepl/energy.shtml

The potential for energy efficiency in a in a small family home is 8,000 kWh.

The potential energy efficiency for the small family car is 6,000 kWh.

 

An increased energy efficiency in the food chain by local food production could decrease the need for fossil energy input by about 32,000 kWh in the family. This is by far the largest area available for increased energy efficiency.

Or, simply put:  A neighbor farmer is far more worth than half a metre extra insulation on the house.

 

:}

 

Normally I do not post anything in its entirety but this piece sums up the energy and food issue so well I make an exception here.

 

http://www.harpers.org/archive/2004/02/0079915

 

THE OIL WE EAT: Following the food chain back to Iraq

 

Richard Manning,

Harper’s Magazine, Feb. 2004, Vol. 308, Issue 1845

The secret of great wealth with no obvious source is some forgotten crime, forgotten because it was done neatly.—Balzac

The journalist’s rule says: follow the money.

This rule, however, is not really axiomatic but derivative, in that money, as even our vice president will tell you, is really a way of tracking energy. We’ll follow the energy.We learn as children that there is no free lunch, that you don’t get something from nothing, that what goes up must come down, and so on. The scientific version of these verities is only slightly more complex. As James Prescott Joule discovered in the nineteenth century, there is only so much energy. You can change it from motion to heat, from heat to light, but there will never be more of it and there will never be less of it. The conservation of energy is not an option, it is a fact. This is the first law of thermodynamics. Special as we humans are, we get no exemptions from the rules. All animals eat plants or eat animals that eat plants. This is the food chain, and pulling it is the unique ability of plants to turn sunlight into stored energy in the form of carbohydrates, the basic fuel of all animals. Solar-powered photosynthesis is the only way to make this fuel. There is no alternative to plant energy, just as there is no alternative to oxygen. The results of taking away our plant energy may not be as sudden as cutting off oxygen, but they are as sure.Scientists have a name for the total amount of plant mass created by Earth in a given year, the total budget for life. They call it the planet’s “primary productivity.” There have been two efforts to figure out how that productivity is spent, one by a group at Stanford University, the other an independent accounting by the biologist Stuart Pimm. Both conclude that we humans, a single species among millions, consume about 40 percent of Earth’s primary productivity, 40 percent of all there is. This simple number may explain why the current extinction rate is 1,000 times that which existed before human domination of the planet. We 6 billion have simply stolen the food, the rich among us a lot more than others.Energy cannot be created or canceled, but it can be concentrated. This is the larger and profoundly explanatory context of a national-security memo George Kennan wrote in 1948 as the head of a State Department planning committee, ostensibly about Asian policy but really about how the United States was to deal with its newfound role as the dominant force on Earth. “We have about 50 percent of the world’s wealth but only 6.3 percent of its population,” Kennan wrote. “In this situation, we cannot fail to be the object of envy and resentment. Our real task in the coming period is to devise a pattern of relationships which will permit us to maintain this position of disparity without positive detriment to our national security. To do so, we will have to dispense with all sentimentality and day-dreaming; and our attention will have to be concentrated everywhere on our immediate national objectives. We need not deceive ourselves that we can afford today the luxury of altruism and world-benefaction.”“The day is not far off,” Kennan concluded, “when we are going to have to deal in straight power concepts.”

If you follow the energy, eventually you will end up in a field somewhere. Humans engage in a dizzying array of artifice and industry. Nonetheless, more than two thirds of humanity’s cut of primary productivity results from agriculture, two thirds of which in turn consists of three plants: rice, wheat, and corn. In the 10,000 years since humans domesticated these rains, their status has remained undiminished, most likely because they are able to store solar energy in uniquely dense, transportable bundles of carbohydrates. They are to the plant world what a barrel of refined oil is to the hydrocarbon world. Indeed, aside from hydrocarbons they are the most concentrated form of true wealth–sun energy–to be found on the planet.

As Kennan recognized, however, the maintenance of such a concentration of wealth often requires violent action. Agriculture is a recent human experiment. For most of human history, we lived by gathering or killing a broad variety of nature’s offerings. Why humans might have traded this approach for the complexities of agriculture is an interesting and long-debated question, especially because the skeletal evidence clearly indicates that early farmers were more poorly nourished, more disease-ridden and deformed, than their hunter-gatherer contemporaries. Farming did not improve most lives. The evidence that best points to the answer, I think, lies in the difference between early agricultural villages and their pre-agricultural counterparts–the presence not just of grain but of granaries and, more tellingly, of just a few houses significantly larger and more ornate than all the others attached to those granaries. Agriculture was not so much about food as it was about the accumulation of wealth. It benefited some humans, and those people have been in charge ever since.

Domestication was also a radical change in the distribution of wealth within the plant world. Plants can spend their solar income in several ways. The dominant and prudent strategy is to allocate most of it to building roots, stem, bark–a conservative portfolio of investments that allows the plant to better gather energy and survive the downturn years. Further, by living in diverse stands (a given chunk of native prairie contains maybe 200 species of plants), these perennials provide services for one another, such as retaining water, protecting one another from wind, and fixing free nitrogen from the air to use as fertilizer. Diversity allows a system to “sponsor its own fertility,” to use visionary agronomist Wes Jackson’s phrase. This is the plant world’s norm.

There is a very narrow group of annuals, however, that grow in patches of a single species and store almost all of their income as seed, a tight bundle of carbohydrates easily exploited by seed eaters such as ourselves. Under normal circumstances, this eggs-in-one-basket strategy is a dumb idea for a plant. But not during catastrophes such as floods, fires, and volcanic eruptions. Such catastrophes strip established plant communities and create opportunities for wind-scattered entrepreneurial seed bearers. It is no accident that no matter where agriculture sprouted on the globe, it always happened near rivers. You might assume, as many have, that this is because the plants needed the water or nutrients. Mostly this is not true. They needed the power of flooding, which scoured landscapes and stripped out competitors. Nor is it an accident, I think, that agriculture arose independently and simultaneously around the globe just as the last ice age ended, a time of enormous upheaval when glacial melt let loose sea-size lakes to create tidal waves of erosion. It was a time of catastrophe.

Corn, rice, and wheat are especially adapted to catastrophe. It is their niche. In the natural scheme of things, a catastrophe would create a blank slate, bare soil, that was good for them. Then, under normal circumstances, succession would quickly close that niche. The annuals would colonize. Their roots would stabilize the soil, accumulate organic matter, provide cover. Eventually the catastrophic niche would close. Farming is the process of ripping that niche open again and again. It is an annual artificial catastrophe, and it requires the equivalent of three or four tons of TNT per acre for a modern American farm. Iowa’s fields require the energy of 4,000 Nagasaki bombs every year.

Iowa is almost all fields now. Little prairie remains, and if you can find what Iowans call a “postage stamp” remnant of some, it most likely will abut a cornfield. This allows an observation. Walk from the prairie to the field, and you probably will step down about six feet, as if the land had been stolen from beneath you. Settlers’ accounts of the prairie conquest mention a sound, a series of pops, like pistol shots, the sound of stout grass roots breaking before a moldboard plow. A robbery was in progress.

When we say the soil is rich, it is not a metaphor. It is as rich in energy as an oil well. A prairie converts that energy to flowers and roots and stems, which in turn pass back into the ground as dead organic matter. The layers of topsoil build up into a rich repository of energy, a bank. A farm field appropriates that energy, puts it into seeds we can eat. Much of the energy moves from the earth to the rings of fat around our necks and waists. And much of the energy is simply wasted, a trail of dollars billowing from the burglar’s satchel.

I’ve already mentioned that we humans take 40 percent of the globe’s primary productivity every year. You might have assumed we and our livestock eat our way through that volume, but this is not the case. Part of that total–almost a third of it–is the potential plant mass lost when forests are cleared for farming or when tropical rain forests are cut for grazing or when plows destroy the deep mat of prairie roots that held the whole business together, triggering erosion. The Dust Bowl was no accident of nature. A functioning grassland prairie produces more biomass each year than does even the most technologically advanced wheat field. The problem is, it’s mostly a form of grass and grass roots that humans can’t eat. So we replace the prairie with our own preferred grass, wheat. Never mind that we feed most of our grain to livestock, and that livestock is perfectly content to eat native grass. And never mind that there likely were more bison produced naturally on the Great Plains before farming than all of beef farming raises in the same area today. Our ancestors found it preferable to pluck the energy from the ground and when it ran out move on.

Today we do the same, only now when the vault is empty we fill it again with new energy in the form of oil-rich fertilizers. Oil is annual primary productivity stored as hydrocarbons, a trust fund of sorts, built up over many thousands of years. On average, it takes 5.5 gallons of fossil energy to restore a year’s worth of lost fertility to an acre of eroded land–in 1997 we burned through more than 400 years’ worth of ancient fossilized productivity, most of it from someplace else. Even as the earth beneath Iowa shrinks, it is being globalized.

Six thousand years before sodbusters broke up Iowa, their Caucasian blood ancestors broke up the Hungarian plain, an area just northwest of the Caucasus Mountains. Archaeologists call this tribe the LBK, short for linearbandkeramik, the German word that describes the distinctive pottery remnants that mark their occupation of Europe. Anthropologists call them the wheat-beef people, a name that better connects those ancients along the Danube to my fellow Montanans on the Upper Missouri River. These proto-Europeans had a full set of domesticated plants and animals, but wheat and beef dominated. All the domesticates came from an area along what is now the Iraq-Syria-Turkey border at the edges of the Zagros Mountains. This is the center of domestication for the Western world’s main crops and live stock, ground zero of catastrophic agriculture.

Two other types of catastrophic agriculture evolved at roughly the same time, one centered on rice in what is now China and India and one centered on corn and potatoes in Central and South America. Rice, though, is tropical and its expansion depends on water, so it developed only in floodplains, estuaries, and swamps. Corn agriculture was every bit as voracious as wheat; the Aztecs could be as brutal and imperialistic as Romans or Brits, but the corn cultures collapsed with the onslaught of Spanish conquest. Corn itself simply joined the wheat-beef people’s coalition. Wheat was the empire builder; its bare botanical facts dictated the motion and violence that we know as imperialism.

The wheat-beef people swept across the western European plains in less than 300 years, a conquest some archaeologists refer to as a “blitzkrieg.” A different race of humans, the Cro-Magnons–hunter-gatherers, not farmers–lived on those plains at the time. Their cave art at places such as Lascaux testifies to their sophistication and profound connection to wildlife. They probably did most of their hunting and gathering in uplandsand river bottoms, places the wheat farmers didn’t need, suggesting the possibility of coexistence. That’s not what happened, however. Both genetic and linguistic evidence say that the farmers killed the hunters. The Basque people are probably the lone remnant descendants of Cro-Magnons, the only trace.

Hunter-gatherer archaeological sites of the period contain spear points that originally belonged to the farmers, and we can guess they weren’t trade goods. One group of anthropologists concludes, “The evidence from the western extension of the LBK leaves little room for any other conclusion but that LBK-Mesolithic interactions were at best chilly and at worst hostile.” The world’s surviving Blackfeet, Assiniboine Sioux, Inca, and Maori probably have the best idea of the nature of these interactions.

Wheat is temperate and prefers plowed-up grasslands. The globe has a limited stock of temperate grasslands, just as it has a limited stock of all other biomes. On average, about 10 percent of all other biomes remain in something like their native state today. Only 1 percent of temperate grasslands remains undestroyed. Wheat takes what it needs.

The supply of temperate grasslands lies in what are today the United States, Canada, the South American pampas, New Zealand, Australia, South Africa, Europe, and the Asiatic extension of the European plain into the sub-Siberian steppes. This area largely describes the First World, the developed world. Temperate grasslands make up not only the habitat of wheat and beef but also the globe’s islands of Caucasians, of European surnames and languages. In 2000 the countries of the temperate grasslands, the neo-Europes, accounted for about 80 percent of all wheat exports in the world, and about 86 percent of all com. That is to say, the neo-Europes drive the world’s agriculture. The dominance does not stop with grain. These countries, plus the mothership–Europe accounted for three fourths of all agricultural exports of all crops in the world in 1999.

Plato wrote of his country’s farmlands:

What now remains of the formerly rich land is like the skeleton of a sick man. …Formerly, many of the mountains were arable, The plains that were full of rich soil are now marshes. Hills that were once covered with forests and produced abundant pasture now produce only food for bees. Once the land was enriched by yearly rains, which were not lost, as they are now, by flowing from the bare land into the sea. The soil was deep, it absorbed and kept the water in loamy soil, and the water that soaked into the hills fed springs and running streams everywhere. Now the abandoned shrines at spots where formerly there were springs attest that our description of the land is true.

Plato’s lament is rooted in wheat agriculture, which depleted his country’s soil and subsequently caused the series of declines that pushed centers of civilization to Rome, Turkey, and western Europe. By the fifth century, though, wheat’s strategy of depleting and moving on ran up against the Atlantic Ocean. Fenced-in wheat agriculture is like rice agriculture. It balances its equations with famine. In the millennium between 500 and 1500, Britain suffered a major “corrective” famine about every ten years; there were seventy-five in France during the same period. The incidence, however, dropped sharply when colonization brought an influx of new food to Europe.

The new lands had an even greater effect on the colonists themselves. Thomas Jefferson, after enduring a lecture on the rustic nature by his hosts at a dinner party in Paris, pointed out that all of the Americans present were a good head taller than all of the French. Indeed, colonists in all of the neo-Europes enjoyed greater stature and longevity, as well as a lower infant-mortality rate–all indicators of the better nutrition afforded by the onetime spend down of the accumulated capital of virgin soil.

The precolonial famines of Europe raised the question: What would happen when the planet’s supply of arable land ran out? We have a clear answer. In about 1960 expansion hit its limits and the supply of unfarmed, arable lands came to an end. There was nothing left to plow. What happened was grain yields tripled.

The accepted term for this strange turn of events is the green revolution, though it would be more properly labeled the amber revolution, because it applied exclusively to grain–wheat, rice, and corn. Plant breeders tinkered with the architecture of these three grains so that they could be hypercharged with irrigation water and chemical fertilizers, especially nitrogen. This innovation meshed nicely with the increased “efficiency” of the industrialized factory-farm system. With the possible exception of the domestication of wheat, the green revolution is the worst thing that has ever happened to the planet.

For openers, it disrupted long-standing patterns of rural life worldwide, moving a lot of no-longer-needed people off the land and into the world’s most severe poverty. The experience in population control in the developing world is by now clear: It is not that people make more people so much as it is that they make more poor people. In the forty-year period beginning about 1960, the world’s population doubled, adding virtually the entire increase of 3 billion to the world’s poorest classes, the most fecund classes. The way in which the green revolution raised that grain contributed hugely to the population boom, and it is the weight of the population that leaves humanity in its present untenable position.

Discussion of these, the most poor, however, is largely irrelevant to the American situation. We say we have poor people here, but almost no one in this country lives on less than one dollar a day, the global benchmark for poverty. It marks off a class of about 1.3 billion people, the hard core of the larger group of 2 billion chronically malnourished people–that is, one third of humanity. We may forget about them, as most Americans do.

More relevant here are the methods of the green revolution, which added orders of magnitude to the devastation. By mining the iron for tractors, drilling the new oil to fuel them and to make nitrogen fertilizers, and by taking the water that rain and rivers had meant for other lands, farming had extended its boundaries, its dominion, to lands that were not farmable. At the same time, it extended its boundaries across time, tapping fossil energy, stripping past assets.

The common assumption these days is that we muster our weapons to secure oil, not food. There’s a little joke in this. Ever since we ran out of arable land, food is oil. Every single calorie we eat is backed by at least a calorie of oil, more like ten. In 1940 the average farm in the United States produced 2.3 calories of food energy for every calorie of fossil energy it used. By 1974 (the last year in which anyone looked closely at this issue), that ratio was 1:1. And this understates the problem, because at the same time that there is more oil in our food there is less oil in our oil. A couple of generations ago we spent a lot less energy drilling, pumping, and distributing than we do now. In the 1940s we got about 100 barrels of oil back for every barrel of oil we spent getting it. Today each barrel invested in the process returns only ten, a calculation that no doubt fails to include the fuel burned by the Hummers and Blackhawks we use to maintain access to the oil in Iraq.

David Pimentel, an expert on food and energy at Cornell University, has estimated that if all of the world ate the way the United States eats, humanity would exhaust all known global fossil-fuel reserves in just over seven years. Pimentel has his detractors. Some have accused him of being off on other calculations by as much as 30 percent. Fine. Make it ten years.

Fertilizer makes a pretty fine bomb right off the shelf, a chemistry lesson Timothy McVeigh taught at Oklahoma City’s Alfred P. Murrah Federal Building in 1995–not a small matter, in that the green revolution has made nitrogen fertilizers ubiquitous in some of the more violent and desperate corners of the world. Still, there is more to contemplate in nitrogen’s less sensational chemistry.

The chemophobia of modem times excludes fear of the simple elements of chemistry’s periodic table. We circulate petitions, hold hearings, launch websites, and buy and sell legislators in regard to polysyllabic organic compounds–polychlorinated biphenyls, polyvinyls, DDT, 2-4d, that sort of thing–not simple carbon or nitrogen. Not that agriculture’s use of the more ornate chemistry is benign–an infant born in a rural, wheat-producing county in the United States has about twice the chance of suffering birth defects as one born in a rural place that doesn’t produce wheat, an effect researchers blame on chlorophenoxy herbicides. Focusing on pesticide pollution, though, misses the worst of the pollutants. Forget the polysyllabic organics. It is nitrogen-the wellspring of fertility relied upon by every Eden-obsessed backyard gardener and suburban groundskeeper–that we should fear most.

Those who model our planet as an organism do so on the basis that the earth appears to breathe–it thrives by converting a short list of basic elements from one compound into the next, just as our own bodies cycle oxygen into carbon dioxide and plants cycle carbon dioxide into oxygen. In fact, two of the planet’s most fundamental humors are oxygen and carbon dioxide. Another is nitrogen.

Nitrogen can be released from its “fixed” state as a solid in the soil by natural processes that allow it to circulate freely in the atmosphere. This also can be done artificially. Indeed, humans now contribute more nitrogen to the nitrogen cycle than the planet itself does. That is, humans have doubled the amount of nitrogen in play.

This has led to an imbalance. It is easier to create nitrogen fertilizer than it is to apply it evenly to fields. When farmers dump nitrogen on a crop, much is wasted. It runs into the water and soil, where it either reacts chemically with its surroundings to form new compounds or flows off to fertilize something else, somewhere else.

That chemical reaction, called acidification, is noxious and contributes significantly to acid rain. One of the compounds produced by acidification is nitrous oxide, which aggravates the greenhouse effect. Green growing things normally offset global warming by sucking up carbon dioxide, but nitrogen on farm fields plus methane from decomposing vegetation make every farmed acre, like every acre of Los Angeles freeway, a net contributor to global warming. Fertilization is equally worrisome. Rainfall and irrigation water inevitably washes the nitrogen from fields to creeks and streams, which flows into rivers, which floods into the ocean. This explains why the Mississippi River, which drains the nation’s Corn Belt, is an environmental catastrophe. The nitrogen fertilizes artificially large blooms of algae that in growing suck all the oxygen from the water, a condition biologists call anoxia, which means “oxygen-depleted.” Here there’s no need to calculate long-term effects, because life in such places has no long term: everything dies immediately. The Mississippi River’s heavily fertilized effluvia has created a dead zone in the Gulf of Mexico the size of New Jersey.

America’s biggest crop, grain corn, is completely unpalatable. It is raw material for an industry that manufactures food substitutes. Likewise, you can’t eat unprocessed wheat. You certainly can’t eat hay. You can eat unprocessed soybeans, but mostly we don’t. These four crops cover 82 percent of American cropland. Agriculture in this country is not about food; it’s about commodities that require the outlay of still more energy to become food.

About two thirds of U.S. grain corn is labeled “processed,” meaning it is milled and otherwise refined for food or industrial uses. More than 45 percent of that becomes sugar, especially high-fructose corn sweeteners, the keystone ingredient in three quarters of all processed foods, especially soft drinks, the food of America’s poor and working classes. It is not a coincidence that the American pandemic of obesity tracks rather nicely with the fivefold increase in corn-syrup production since Archer Daniels Midland developed a high-fructose version of the stuff in the early seventies. Nor is it a coincidence that the plague selects the poor, who eat the most processed food.

It began with the industrialization of Victorian England. The empire was then flush with sugar from plantations in the colonies. Meantime the cities were flush with factory workers. There was no good way to feed them. And thus was born the afternoon tea break, the tea consisting primarily of warm water and sugar. If the workers were well off, they could also afford bread with heavily sugared jam–sugar-powered industrialization. There was a 500 percent increase in per capita sugar consumption in Britain between 1860 and 1890, around the time when the life expectancy of a male factory worker was seventeen years. By the end of the century the average Brit was getting about one sixth of his total nutrition from sugar, exactly the same percentage Americans get today–double what nutritionists recommend.

There is another energy matter to consider here, though. The grinding, milling, wetting, drying, and baking of a breakfast cereal requires about four calories of energy for every calorie of food energy it produces. A two-pound bag of breakfast cereal burns the energy of a half-gallon of gasoline in its making. All together the food-processing industry in the United States uses about ten calories of fossil-fuel energy for every calorie of food energy it produces.

That number does not include the fuel used in transporting the food from the factory to a store near you, or the fuel used by millions of people driving to thousands of super discount stores on the edge of town, where the land is cheap. It appears, however, that the corn cycle is about to come full circle. If a bipartisan coalition of farm-state lawmakers has their way–and it appears they will–we will soon buy gasoline containing twice as much fuel alcohol as it does now. Fuel alcohol already ranks second as a use for processed corn in the United States, just behind corn sweeteners. According to one set of calculations, we spend more calories of fossil-fuel energy making ethanol than we gain from it. The Department of Agriculture says the ratio is closer to a gallon and a quart of ethanol for every gallon of fossil fuel we invest. The USDA calls this a bargain, because gasohol is a “clean fuel.” This claim to cleanness is in dispute at the tailpipe level, and it certainly ignores the dead zone in the Gulf of Mexico, pesticide pollution, and the haze of global gases gathering over every farm field. Nor does this claim cover clean conscience; some still might be unsettled knowing that our SUVs’ demands for fuel compete with the poor’s demand for grain.

Green eaters, especially vegetarians, advocate eating low on the food chain, a simple matter of energy flow. Eating a carrot gives the diner all that carrot’s energy, but feeding carrots to a chicken, then eating the chicken, reduces the energy by a factor of ten. The chicken wastes some energy, stores some as feathers, bones, and other inedibles, and uses most of it just to live long enough to be eaten. As a rough rule of thumb, that factor of ten applies to each level up the food chain, which is why some fish, such as tuna, can be a horror in all of this. Tuna is a secondary predator, meaning it not only doesn’t eat plants but eats other fish that themselves eat other fish, adding a zero to the multiplier each notch up, easily a hundred times, more like a thousand times less efficient than eating a plant.

This is fine as far as it goes, but the vegetarian’s case can break down on some details. On the moral issues, vegetarians claim their habits are kinder to animals, though it is difficult to see how wiping out 99 percent of wildlife’s habitat, as farming has done in Iowa, is a kindness. In rural Michigan, for example, the potato farmers have a peculiar tactic for dealing with the predations of whitetail deer. They gut-shoot them with small-bore rifles, in hopes the deer will limp off to the woods and die where they won’t stink up the potato fields.

Animal rights aside, vegetarians can lose the edge in the energy argument by eating processed food, with its ten calories of fossil energy for every calorie of food energy produced. The question, then, is: Does eating processed food such as soy burger or soy milk cancel the energy benefits of vegetarianism, which is to say, can I eat my lamb chops in peace? Maybe. If I’ve done my due diligence, I will have found out that the particular lamb I am eating was both local and grass-fed, two factors that of course greatly reduce the embedded energy in a meal. I know of ranches here in Montana, for instance, where sheep eat native grass under closely controlled circumstances–no farming, no plows, no corn, no nitrogen. Assets have not been stripped. I can’t eat the grass directly. This can go on. There are little niches like this in the system. Each person’s individual charge is to find such niches.

Chances are, though, any meat eater will come out on the short end of this argument, especially in the United States. Take the case of beef. Cattle are grazers, so in theory could live like the grass-fed lamb. Some cattle cultures–those of South America and Mexico, for example–have perfected wonderful cuisines based on grass-fed beef. This is not our habit in the United States, and it is simply a matter of habit. Eighty percent of the grain the United States produces goes to livestock. Seventy-eight percent of all of our beef comes from feed lots, where the cattle eat grain, mostly corn and wheat. So do most of our hogs and chickens. The cattle spend their adult lives packed shoulder to shoulder in a space not much bigger than their bodies, up to their knees in shit, being stuffed with grain and a constant stream of antibiotics to prevent the disease this sort of confinement invariably engenders. The manure is rich in nitrogen and once provided a farm’s fertilizer. The feedlots, however, are now far removed from farm fields, so it is simply not “efficient” to haul it to cornfields. It is waste. It exhales methane, a global-warming gas. It pollutes streams. It takes thirty-five calories of fossil fuel to make a calorie of beef this way; sixty-eight to make one calorie of pork.

Still, these livestock do something we can’t. They convert grain’s carbohydrates to high-quality protein. All well and good, except that per capita protein production in the United States is about double what an average adult needs per day. Excess cannot be stored as protein in the human body but is simply converted to fat. This is the end result of a factory-farm system that appears as a living, continental-scale monument to Rube Goldberg, a black-mass remake of the loaves-and-fishes miracle. Prairie’s productivity is lost for grain, grain’s productivity is lost in livestock, livestock’s protein is lost to human fat–all federally subsidized for about $15 billion a year, two thirds of which goes directly to only two crops, corn and wheat.

This explains why the energy expert David Pimentel is so worried that the rest of the world will adopt America’s methods. He should be, because the rest of the world is. Mexico now feeds 45 percent of its grain to livestock, up from 5 percent in 1960. Egypt went from 3 percent to 31 percent in the same period, and China, with a sixth of the world’s population, has gone from 8 percent to 26 percent. All of these places have poor people who could use the grain, but they can’t afford it.

I live among elk and have learned to respect them. One moonlit night during the dead of last winter, I looked out my bedroom window to see about twenty of them grazing a plot of grass the size of a living room. Just that small patch among acres of other species of native prairie grass. Why that species and only that species of grass that night in the worst of winter when the threat to their survival was the greatest? What magic nutrient did this species alone contain? What does a wild animal know that we don’t? I think we need this knowledge.

Food is politics. That being the case, I voted twice in 2002. The day after Election Day, in a truly dismal mood, I climbed the mountain behind my house and found a small herd of elk grazing native grasses in the morning sunlight. My respect for these creatures over the years has become great enough that on that morning I did not hesitate but went straight to my job, which was to rack a shell and drop one cow elk, my household’s annual protein supply. I voted with my weapon of choice–an act not all that uncommon in this world, largely, I think, as a result of the way we grow food. I can see why it is catching on. Such a vote has a certain satisfying heft and finality about it. My particular bit of violence, though, is more satisfying, I think, than the rest of the globe’s ordinary political mayhem. I used a rifle to opt out of an insane system. I killed, but then so did you when you bought that package of burger, even when you bought that package of tofu burger. I killed, then the rest of those elk went on, as did the grasses, the birds, the trees, the coyotes, mountain lions, and bugs, the fundamental productivity of an intact natural system, all of it went on.

~~~~~~~~

By Richard Manning

Richard Manning is the author of Against the Grain: How Agriculture Has Hijacked Civilization, to be published this month by North Point Press.

Will Field Corn Kill Us? No but it’s killing the cows..

Many people were horrified by the scandal surrounding cattle that were so weak that they were either being prodded with a forklift or actually carried to the kill room with the fork lift. Most people, not being involved in agriculture, wondered how anyone could be so callous. BUT the most disgusting thing you run into when you look into the issue of Factory Farming Cattle (and there are a lot of nasty things here) is that the corn that is feed to the cattle after they are weaned is killing them. So to slaughterhouse staff and meat packers its a matter timing whether they get them in the kill room before they die.

http://richard-goodman.blogspot.com/2008/02/meatpacker-in-cow-abuse-scandal-may.html

 Meatpacker in Cow-Abuse Scandal May Shut as Congress Turns Up Heat

By DAVID KESMODEL and JANE ZHANG
Write to David Kesmodel at david.kesmodel @ wsj.com
and Jane Zhang at Jane.Zhang @ wsj.com
February 25, 2008; 
CHINO, Calif. — Last year, a man carrying a hidden video camera took a $12-an-hour job at a little-known beef slaughterhouse here. Now the meatpacker is about to collapse, and has become a flashpoint in a national debate over meat safety and the quality of food Americans serve their schoolchildren.

Hallmark/Westland Meat Packing Co., one of the biggest suppliers of beef to the national school-lunch program before videos showing animal cruelty at the plant helped trigger the biggest meat recall in U.S. history, probably will shut down permanently, according to the company’s general manager, Anthony Magidow.

:}

As John Robbins points out modern cattle raising is all about carving up cattle quick:

What About Grass-fed Beef?

 Feeding grain to cattle has got to be one of the dumbest ideas in the history of western civilization.

Cows, sheep, and other grazing animals are endowed with the ability to convert grasses, which those of us who possess only one stomach cannot digest, into food that we can digest. They can do this because they are ruminants, which is to say that they possess a rumen, a 45 or so gallon (in the case of cows) fermentation tank in which resident bacteria convert cellulose into protein and fats.

Traditionally, all beef was grass-fed beef, but in the United States today what is commercially available is almost all feedlot beef. The reason? It’s faster, and so more profitable. Seventy-five years ago, steers were 4 or 5 years old at slaughter. Today, they are 14 or 16 months. You can’t take a beef calf from a birth weight of 80 pounds to 1,200 pounds in a little more than a year on grass. It takes enormous quantities of corn, protein supplements, antibiotics and other drugs, including growth hormones.

Switching a cow from grass to grain is so disturbing to the animal’s digestive system that it can kill the animal if not done gradually and if the animal is not continually fed antibiotics. These animals are designed to forage, but we make them eat grain, primarily corn, in order to make them as fat as possible as fast as possible.
 All this is not only unnatural and dangerous for the cows. It also has profound consequences for us. Feedlot beef as we know it today would be impossible if it weren’t for the routine and continual feeding of antibiotics to these animals. This leads directly and inexorably to the development of antibiotic-resistant bacteria. These are the new “superbugs” that are increasingly rendering our “miracle drugs” ineffective.

:}

Letting Corporations into anything in agriculture besides processing is turning out to be a disaster in many respects from beginning to end. To this end we could talk about any plant or animal that we eat, but if we keep our focus on corn it becomes clear that all the corporate ag production affairs require one thing energy and lots of it.

While the movie, King Corn, has a lot going for it, like cute college kids out for a lark and the absurdity of growing an acre of anything in the current farm system, it is actually a pretty good look at why growing as much corn as we do is stupid and corporate farming only compounds that.

:}

http://www.pbs.org/independentlens/kingcorn/

While the planting, growing and harvesting of field corn takes an incredible amount of energy, the real energy comes after it has been harvested. You can’t eat the stuff so it all has to be PROCESSED to be used or eaten by animals most of which don’t like the stuff but eat it if they are forced to. As the film makers themselves say:

 http://kingcorn.net/

Almost everything Americans eat contains corn: high fructose corn syrup, corn-fed meat, and corn-based processed foods are the staples of the modern diet.  Ready for an adventure and alarmed by signs of their generation’s bulging waistlines, college friends Ian Cheney and Curt Ellis know where to go to investigate.  Eighty years ago, Ian and Curt’s great-grandfathers lived just a few miles apart, in the same rural county in northern Iowa.  Now their great-grandsons are returning with a mission:  they will plant an acre of corn, follow their harvest into the world, and attempt to understand what they—and all of us—are really made of.

 

But where will all that corn go? Ian and Curt leave Iowa to find out, first considering their crop’s future as feed.  In Colorado, rancher Sue Jarrett says her cattle should be eating grass.  But with a surplus of corn, it costs less to raise cattle in confinement than to let them roam free: “The mass production of corn drives the mass production of protein in confinement.”  Animal nutritionists confirm that corn makes cows sick and beef fatty, but it also lets consumers eat a $1 hamburger.  Feedlot owner Bob Bledsoe defends America’s cheap food, but as Ian and Curt see in Colorado, the world behind it can be stomach turning.  At one feedlot, 100,000 cows stand shoulder-to-shoulder, doing their part to transform Iowa corn into millions of pounds of fat-streaked beef.

 

Following the trail of high fructose corn syrup, Ian and Curt hop attempt to make a home-cooked batch of the sweetener in their kitchen.  But their investigation of America’s most ubiquitous ingredient turns serious when they follow soda to its consumption in Brooklyn.  Here, Type II diabetes is ravaging the community, and America’s addiction to corny sweets is to blame.

 

The breadth of the problem is now clear: the American food system is built on the abundance of corn, an abundance perpetuated by a subsidy system that pays farmers to maximize production.  In a nursing home in the Indiana suburbs, Ian and Curt come face-to-face with Earl Butz, the Nixon-era Agriculture Secretary who invented subsidies.  The elderly Butz champions the modern food system as an “Age of plenty” Ian and Curt’s great-grandfathers only dreamed of.

.

 November pulls Ian and Curt back to Iowa.  Their 10,000-pound harvest seems as grotesque as it is abundant.  They haul their corn to the elevator and look on as it makes its way into a food system they have grown disgusted by.  At a somber farm auction, Ian and Curt decide to tell their landlord they want to buy the acre.  The next spring their cornfield has been pulled from production and planted in a prairie, a wild square surrounded by a sea of head-high corn.

 :}

OKOKOKOKOK So maybe corn IS killing us but will we miss it when its gone because of energy prices. Probably not one bit though the first winter maybe tough if gasoline goes to $100 a gallon. The first to go though will be the exporting of grain. Do you believe we actually pile billions of tons of corn on diesal power ships so that other people can refine (errr spend their energy on) it? They can’t eat it either.

For more:

Iowa Corn
Get info on biotechnology, corn products and Iowa corn growers.

Corn Palace Convention and Visitors Bureau
As seen in KING CORN, Mitchell, South Dakota’s Corn Palace is a monument to the country’s leading crop.

American Corn Growers Association
“America’s leading progressive commodity association, representing the interests of corn producers in 35 states.”

A Zillion Uses for Corn!
An extensive list of products that contain corn.

Putting DNA to Work: Improving Crops: From Teosinte to Corn
See photos of corn’s ancestor and read about how its genetic makeup has evolved.

EWG: Farm Subsidy Database
View graphs and databases on corn subsidies in the United States.

Mountains of Corn and a Sea of Farm Subsidies
Reprinted from a 2005 New York Times article, this piece examines how the country’s corn overproduction is affecting its farmers.

No-Till Farmer
Top tips on growing monoculture corn.

Corn Refiners Association
Learn about corn refining and resulting products.

High Fructose Corn Syrup
HFCS, how it’s made and how it affects your health, plus other links.

:}

Gasoline Hits $100 A Gallon – The world ends

Well actually it doesn’t. But it will definitely change our lifestyles and our foodchain. But not really the way either the right or the left think or at least want you to believe. Believe me I am not being callous when I simply say that lots of people will die. There is no denying that and if we let it CHAOS could insue. But I don’t it will happen that way. One way or another we will either very quickly get a lot more renewable energy sources in place or we as a nation will be forced to return to a small farm society. The Saudi’s know for sure what is coming because they just anounced another huge solar project. Something like this:

http://query.nytimes.com/gst/fullpage.html?sec=health&res=9D07E1D71639F932A35752C1A965948260

TWO years ago, this village of 3,000 people, only 20 miles from Riyadh, the capital of this kingdom, had no electricity. Today, villagers proudly display their televisions, toasters and other accouterments of an electrified society.

But when Saudis here turn their lights on at night, they are using energy generated not by their country’s vast oil reserves, but by the sun.

This village and two others nearby are the first in the kingdom, or anywhere, to be powered continuously and primarily by solar power.

:}

:}

I realize that yesterday I gave sort of a short shift to the Peak Oil people. I kinda acted like everyone in the audience would know what that is. So here are some of their more promenant sites:

http://www.theoildrum.com/

http://www.peakoil.com/

Energy Sites
 wakeuptosolars.gif

:}

Please note the bell shaped curve above. That is their arguement in a nutshell. In other words demand has exceeded the ability of the oil producers to provide oil. That ability to produce will eventually “fall off” as the supply ends and prices will go through the roof (read: become prohibitive). So what does that mean for the now Industrialized Foodchain?

In Michael Pollan’s 2006 book, The Omnivore’s Dilemma, he lays out huge problems with our corporate food chain:

http://en.wikipedia.org/wiki/The_Omnivore’s_Dilemma

 Industrial

Pollan begins with an exploration of the food-production system from which the vast majority of American meals are derived. This industrial food chain is largely based on corn, whether it is eaten directly, fed to livestock, or processed into chemicals such as glucose and ethanol. Pollan discusses how the humble corn plant came to dominate the American diet through a combination of biological, cultural, and political factors. The role of petroleum in the cultivation and transportation of the American food supply is also discussed.

A fast food meal is used to illustrate the end result of the industrial food chain.

:}

In fact a scientist said that if humanity quit using nitrogen fertilizer it would be like taking EVERY automobile in the WORLD off the road.

However its interesting that he actually fails in what he sets out to do. His goal was actually to grow throught the progression of Industrial—> Small Farm—> Vegan—>Make my own meal. He wanted to make the point that Vegatarion was the way to go to save the planet from us humans. His thought being that he would make up a giant tofu salad at the end of the book. It did not go that way, because he quickly discovered that going meatless is tougher than he thought AND that it would take MORE energy inputs than we currently use to take the whole USA vegatarian. In other words we omnivores by DESIGN (duh) and we can’t change that by wishing it to be so. In the end he makes his meal and includes fish in it to show that heh you can “eat locally”.  Hunting animals is a lot tougher  than fishing. But heh he does not say how long it took to catch the one he shared.

Next – On to King Corn.
:}

Food And Oil – We are all gona die

Since the Peak Oil people have managed to scare the begeezus out of the whole world. I though that it was time to engage in a meditation on the Relationship between Food and Energy. Having sat through similar meditations on Religion and Energy Conservation (18 posts) and Energy Policy and the Presidential Candidates (17 posts) I can assure you this will not take more than 3 or 4 posts and will probably include Weird Bird Friday.

But let’s start with  Michael Pollan’s book The Omnivore’s Delimma and a film, King Corn, by Ian Cheney and Curt Ellis, to take an initial pass at the problem.

http://www.pbs.org/independentlens/kingcorn/

http://www.michaelpollan.com/omnivore.php

But before we do let’s do a little thought experiment because King Corn and the Omnivore’s Dilemma both ultimately fail in what they hope to accomplish.  In fact, I think that the high price of oil right now is being manipulated by the producers, the futures market and the refiners and it will come down. But as I have said to the Peak Oil people all along, we are maybe at the “oil Plateau”, but we are not at the “decline” part of the curve. It WILL COME. Thus, it is good to think about the situation to see what may happen.

As an aside here for another second. I have actually thought about farming for alot of my life because I believe that the world is warming because of our release of greenhouse gases, and that warming will destabalize our weather. That in effect would disrupt the farmers and thus the food supply. Under the “Peak Oil” senario what would happen is that all of the energy inputs into our industrial linear monocultural food chain would be withdrawn. This means no fertilizers, and no transportation for the food grown. Or maybe foods that can travel less distances. But eventually this would leaves us with no fuel to drive the tractors to plant the seeds and a loss of refrigeration. Or at least the type of refrigeration we are used to. If you believe their worst case senarios this could happen rather quickly. Think, as one of their leading bloggers recently said, about the impact of gasoline that costs 100$$ a gallon. I live about 6 or 7 miles from Springfield and I can tell you I would be walking to town at that point.

Still would we all die? If you mean ALL as Humanity, yes many of us would die if the worldwide food chain were disrupted. But think about it in another way, food would become trapped in the producing and exporting nations. So those countries would be awash in the foods that they produce. As we have seen in this last round of oil price increases the poorer countries of the world would face food riots, mass starvation, disease and death. In a moral cataclysm, the question for the 3rd world would be what to do with the bodies. Burying them would be dumb, burning them even worse…but should we recycle dead humans? Maybe we need to think about that.

In much of the world and even in parts of the third world what would happen is that we all would have to become hunters and gathers again. I am not saying that lives would not be lost, and that tremendous tumult would not result but at least initially we all would have to become small plot croppers like we did during WWII. When I mention Victory Gardens to the PO (peak oil) folks they go ballistic. They jump up and down and shout, “It’s the population stupid.”

 

So if the ALL in We Are All Going To Die is we folks in the US of A then let’s look at it. In 1940 there were 133 million people in the US, now there are roughly 280 million people. So a simple analysis could say that 150 million people here would die. That is to die back to the point where Victory Gardens were effective. But I have my doubts about that. Looking at the worst disaster to hit this country, the Flu Pandemic of 1918 the US suffered a net loss of population of 60 thousand people. That was .06% of the population.

 

I also am intellectually opposed to “science fiction” posturings where the rich rule the world and the poor eat Solent Green. Nonetheless I am not naïve enough to assume that millions won’t die here. The Pandemic actually wiped out a birth rate producing 1.5 million people a year before it “went negative”. Would we survive as a capitalist democracy? That is a much bigger question. It would be imperative in that first farming year that fuel prices spiked that every scrap of food grown is preserved. Capitalists might not be willing to pay the cost of that. Would many of us end up eating field corn or something made out of it. Heck yes. Would our livestock have to get by on grass? Oh yah. Would the megacities empty. I don’t know, but again the problem is corporate land ownership. That land would have to be expropriated to put small producers on it. Is democracy up for the test? It may have no choice.

 

Would I survive as a country boy living in the middle of Illinois? Yes, I believe I would. Country Boys Will Survive. God, I have always wanted to say that.